
Journal of Computational Physics 225 (2007) 1442–1471

www.elsevier.com/locate/jcp
Stretching-based diagnostics and reduction of chemical
kinetic models with diffusion

A. Adrover a,*, F. Creta b, M. Giona a, M. Valorani b
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Abstract

A new method for diagnostics and reduction of dynamical systems and chemical kinetic models is proposed. The
method makes use of the local structure of the normal stretching rates by projecting the dynamics onto the local directions
of maximal stretching. The approach is computationally very simple as it implies the spectral analysis of a symmetric
matrix. Notwithstanding its simplicity, stretching-based analysis derives from a geometric basis grounded on the pointwise
applications of concepts of normal hyperbolicity theory. As a byproduct, a simple reduction method is derived, equivalent
to a ‘‘local embedding algorithm’’, which is based on the local projection of the dynamics onto the ‘‘most unstable and/or
slow modes’’ compared to the time scale dictated by the local tangential dynamics. This method provides excellent results
in the analysis and reduction of dynamical systems displaying relaxation towards an equilibrium point, limit cycles and
chaotic attractors. Several numerical examples deriving from typical models of reaction/diffusion kinetics exhibiting com-
plex dynamics are thoroughly addressed. The application to typical combustion models is also analyzed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many chemical, biochemical and biological processes involve a large number of species and reactions [1,2],
and the resulting kinetic schemes, either under perfectly mixed condition or, a fortiori when spatial inhomo-
geneities (diffusion and/or convection) are accounted for, are expressed by means of high-dimensional dynam-
ical systems. The occurrence of a large number of different time scales, and the resulting stiffness of the model
equations are common features of all these models.
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In order to highlight the role and the influence of the different kinetic steps (model diagnostics), simplify the
model equations, and possibly obtain a reduced model, different theoretical and computational approaches
have been proposed, such as the Intrinsic Low-Dimensional Manifold (ILDM) method [3–5], Computational
Singular Perturbation (CSP) [6,7], the Method of Invariant Manifold (MIM) [8,9], the method by Fraser and
Roussel [10,11], methods based on Lyapunov functions such as the thermodynamic free energy [12,13], meth-
ods based on the intrinsic dynamics in the tangent/cotangent bundle [14], the Zero Time Derivative method
[15], a combination of the Fraser and Roussel method with CSP [16]. For a review and a comparison of several
of these approaches see [17,18].

The common denominator of all these computational strategies is a simple and evocative paradigm: the
occurrence within the phase space of a Slow Invariant Manifold (SIM) for system dynamics, attracting nearby
orbits, possessing a lower dimensionality than the phase space, and representing the backbone around which
orbit dynamics is organized.

In the case of infinite-dimensional systems, such as reaction–diffusion models [19] expressed by means of a
system of partial differential equations, the transposition of ILDM and CSP approaches have been proposed
by Hadjinicolau and Goussis [20], Singh et al. [21], Goussis et al. [22], via the concept of an infinite-dimen-
sional slow manifold obtained by projecting the dynamics onto the local slow modes associated with the kinet-
ics. These approaches have been developed aside from the inertial manifold theory, proposed by Temam et al.
[23,24] that provides functional–theoretical criteria and computational methods [25–28] to obtain a finite-
dimensional representation of reaction–diffusion dynamics within an absorbing invariant set.

Motivated by the case study of singularly perturbed systems [29–31], considered as a benchmarking proto-
type, the recent literature on model simplification and reduction has been characterized by a superposition of
tools and methods deriving from geometric concepts (essentially expressing manifold invariance), perturbation
theory and computational strategies. CSP by Lam and Goussis [6,7], and the approach proposed in [16,32]
provide examples of the superposition of paradigms.

Although the connection between singularly perturbed system and computational methods for model
reduction in generic models is strong and motivated, it is important to observe that the formulation of reduc-
tion strategies for generic dynamical systems of physical interest is in general divorced from a perturbative
analysis, and that singularly perturbed systems represent solely a nonexhaustive class of dynamical models
which can be tackled and simplified by means of model reduction methods.

The intermingling of concepts deriving from singular perturbation theory, differential geometry and numer-
ical analysis has provided a wealth of different computational strategies to tackle model simplification of com-
plex kinetics schemes. On the other hand, some controversial issues have been raised on the definition of slow
manifolds and their properties. The reason for this may be attributed to different reasons: (i) the conditions
imposed by different authors on slow manifolds may have different nature (e.g. by imposing some smoothness
and analyticity criteria on the local representation of the manifold itself that by other authors are neglected
[33–35]); (ii) any geometrical definition of the slow manifold should be grounded on global properties defined
throughout the entire phase space, including the behavior at infinity [36], while this may not be the case in
perturbation studies; (iii) in practical applications to model reduction of complex kinetic schemes, ‘‘intrinsic
low-dimensional manifolds’’ may lack some basic properties (such as invariance [37], see e.g. [38]), and this
limitation ‘‘collides’’ with more formal mathematical definitions of slow invariant manifolds [39]. Correspond-
ingly, the very basic concept of ‘‘slow/fast decomposition’’ of complex reaction schemes may involve some
intrinsic degree of arbitrariness since it relies on the specific method adopted in model diagnostics and reduc-
tion (such as ILDM [3], CSP [7], MIM [8]).

Apart from these fundamental issues on the definition of slow invariant manifolds, it is important to
observe that most of the computational strategies proposed for model simplification and reduction have been
developed and tested for chemically reacting systems evolving towards a stable equilibrium point. The ILDM
and CSP methods have been verified and benchmarked by considering chemical reacting systems and combus-
tion models relaxing towards equilibria as paradigmatic examples [4,40]. It is, therefore, not surprising that the
application of these model reduction techniques display problems and shortcomings when applied to dynam-
ical systems evolving towards more general limit sets such as limit cycles and chaotic attractors [14]. In point of
fact, the occurrence of persistent asymptotic oscillations defined on periodic/aperiodic/chaotic limit sets is a
common feature observed in many chemical and biochemical open systems (closed adiabatic chemical systems
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obeying the law of mass action, possess a unique stable equilibrium point). For a review, see the monographs
by Scott and Goldbeter [41,42], and references cited therein.

As far as reduction strategies are concerned, the occurrence of more complex limit attractors introduces an
extra degree of complexity to be taken into account. An efficient reduction algorithm for these dynamical sys-
tems should not only correctly describe the relaxation towards the limit set, but also the oscillating behavior on
the invariant limit set itself. Several geometrical approaches have been proposed for tackling this wider class of
dynamical systems, which are based on invariant vector dynamics within the tangent bundles [14,43,44]. All
these approaches are theoretically extremely interesting, since they address invariant geometric features of
dynamical systems on a fundamental level, but suffer the problem of being computationally onerous for
higher-dimensional dynamical systems, as they require the explicit estimate of vector dynamics along system
orbits. In the case one is interested in the reconstruction of the dynamics exclusively on invariant limit sets, a
wealth of different approaches have been provided. For a review, see e.g. [45] and references cited therein.

The aim of this article is to propose a simple and efficient model reduction and diagnostic method for gen-
eric dynamical systems regardless of their finite or infinite-dimensional nature, and of the geometry of their
limit sets. At the core of the method is a geometric characterization based on local normal stretching rates.
The numerics requires the spectral characterization of a symmetric matrix.

In spite of its conceptual simplicity, the stretching-based method for system diagnostics is based on a geo-
metric description of local tangent and normal dynamics. This geometric description finds its theoretical jus-
tification in the theory of normal hyperbolicity [39,46], viewed on a local level, i.e., pointwisely along system
orbits. To some extent, the stretching-based method shares some analogies with some recent modification of
ILDM [8,47]. However, there are some conceptual differences between the method proposed and these ILDM-
based strategies, as discussed in the remainder of the article (Section 3).

The stretching-based reduction method can be viewed as a local embedding technique stemming from the
stretching rate analysis of the system, obtained by locally projecting the dynamics onto the most unstable/slow
directions. The reduction method proposed is computationally simple and efficient as it exclusively involves
the solution of a lower-dimensional system of ordinary differential equations without nonlinear constraints,
the dimension of which coincides with the number of relevant normal directions that should be locally
accounted for.

The article is organized as follows. Section 2 reviews succinctly the basic notions of normal hyperbolicity
and the definition of local normal/tangential stretching rates. Several examples taken from prototypical kinetic
models highlight the meaning of the stretching-based analysis in the characterization of dynamic properties
along system orbits and invariant manifolds. Section 3 introduces the stretching-based approach to model
characterization in the general n-dimensional case and explores connections and differences with other existing
methods. In particular, we show how to compute the normal stretching rate spectrum (and the corresponding
set of directions of maximum normal stretching restricted to the normal subspace) and how it can be used for
performing a local classification of the slow and fast (or unstable/stable) modes of the dynamics. Section 4
addresses the stretching-based method via some paradigmatic examples, by considering both low-dimensional
models and nonlinear reaction–diffusion kinetics originating periodic and chaotic oscillations. The role of con-
servation laws in chemical kinetics is addressed in an Appendix, by considering the Michaelis–Menten enzy-
matic reaction as a prototypical model. Section 5 develops the stretching-based reduction method, and
discusses several empirical criteria for defining the number of relevant normal modes. Apart from low-dimen-
sional prototypical systems exhibiting chaotic behavior, the examples of application of the stretching-based
reduction strategy concern infinite-dimensional reaction–diffusion systems and premixed flames.

2. Normal hyperbolicity and stretching rates

The theory of invariant manifolds of dynamical systems is grounded on the concept of normal hyperbolicity

[39]. Essentially, given a map (diffeomorphism) / of a manifold M onto itself, / : M!M, a smooth subman-
ifold V, invariant under / (i.e. such that /ðVÞ �V) is normally hyperbolic if the tangent bundle TMjV of M
restricted to V can be decomposed into three continuous sub-bundles:
TMjV ¼Nu � TV�Ns ð1Þ
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where TV is the tangent bundle of V, and Nu �Ns corresponds to a splitting of the normal bundle to V
into an unstable and a stable sub-bundle. The two normal sub-bundles Nu and Ns are such that the vector
dynamics generated by /, i.e. the linear map D/ : TM! TM of the tangent bundle onto itself defined by the
differential1 D/ of / is such that:

(1) D/ expands vectors of Nu more sharply than vectors of TV,
(2) D/ contracts vectors of Ns more sharply than vectors of TV.

This definition of normal hyperbolicity is of global nature, i.e. it refers to the evolution of vectors in the sub-
bundles Nu, TV;Ns. A local definition of normal hyperbolicity based on local rates of expansion and con-
traction, specifically suited for local diagnostics and model reduction, is given in the remainder of the article
(see Eq. (26) and related discussion).

In general terms, therefore, the concept of normal hyperbolicity of a manifold indicates that the strength of
the flow along the manifold is weaker than the attraction/repulsion to/from it [46]. Under the condition of nor-
mal hyperbolicity, a wealth of results can be established on the existence and persistence of invariant manifolds
of dynamical systems, such as the Hadamard–Perron theorem regarding the existence of stable and unstable
manifolds [39], and the Fenichel’s results related to the persistence of invariant manifolds under perturbations
[31]. The latter theorem is invoked in the singular perturbation theory of dynamical systems to confer a firm
mathematical setting to perturbation methods and computational approaches aimed at decoupling slow and fast
components of the dynamics, and at obtaining numerical approximations of slow invariant manifolds [37].

By focusing on dynamical systems possessing linearly stable (i.e. exponentially attracting [48]) slow invari-
ant manifolds W, the splitting of the tangent bundle expressed by Eq. (1) at any point x 2W simplifies, since
the unstable sub-bundle Nu is absent and TMjW can be decomposed as follows:
1 By
the lin

2 An
a slow
TMjW ¼ TW�Ns ð2Þ

where vectors belonging to Ns are contracted by the action of the differential D/ more sharply than vectors
belonging to the tangent sub-bundle TW of W. In the case of exponentially attracting manifolds, the require-
ment associated with the notion of normal hyperbolicity dictates that whatever the dynamics within the invari-
ant manifold W is, normal vectors to W experience a more intense contraction (measured by their norms)
than tangent vectors belonging to TW. The latter property is also the most intuitive dynamic requirement
for an exponentially attracting invariant manifold in order to be regarded as a ‘‘slow manifold’’.

The fact that an invariant exponentially attracting manifold should possess some form of normal hyperb-
olicity in order to be regarded as a ‘‘slow manifold’’ (in the intuitive and physically motivated meaning of this
wording) is further addressed in this Section. A clear example of the importance of this property stems from
the analysis of linear systems dx=dt ¼ Ax, where x 2 Rn, and the constant coefficient matrix A possesses dis-
tinct real and negative eigenvalues. For this class of systems, given any point x0 2 Rn, the global orbit Oðx0Þ
emanating from x0, i.e. the union of forward and backward orbits originating from x0, is an invariant and
exponentially attracting one-dimensional manifold. However, solely the linear eigenmanifold passing through
the origin 0 and spanned by the slowest eigenvector possesses the property that normal perturbations to it
decay faster than tangential perturbations, thus motivating the claim that this manifold is the slow invariant
one-dimensional manifold of the system2.

The concept of normal hyperbolicity can be formulated in a way convenient to develop methods for model
reduction alternative to the existing ones, and explicitly accounting for the dynamic properties of normal/tan-
gential vectors. To this purpose, it is convenient to introduce the concept of tangential and normal stretching
rates, in order to reformulate the analysis on a local basis.

First, let us consider the case of two-dimensional dynamical systems (the extension to higher-dimensional
dynamics is developed in the next section).
choosing a coordinate system of M;x ¼ ðx1; . . . ; xnÞ, and letting v 2 TMx, the action of the differential D/ onto v, is represented by
ear system D/v ¼ Av, where A ¼ o/ðxÞ=ox is the Jacobian matrix of /.
alogously, the m-dimensional eigenmanifold, passing through the origin and spanned by the first m smallest eigenvalues, is actually
invariant manifold such that normal perturbations to it decay faster than tangential ones.



1446 A. Adrover et al. / Journal of Computational Physics 225 (2007) 1442–1471
Let
3 He
indicat

4 Eq
startin
subspa
v ¼ af

definit
respec
equati
the ta
ðdn=dt

where
dx

dt
¼ fðxÞ ð3Þ
be a two-dimensional dynamical system defined in R2, and let us further suppose that the system possesses a
one-dimensional invariant slow-manifold W associated with the unique stable equilibrium point x� ¼ 0, so
that fðx�Þ ¼ fð0Þ ¼ 0. Vector dynamics in the tangent bundle is described by the equation
dv

dt
¼ JðxÞv ð4Þ
where JðxÞ ¼ ofðxÞ=ox is the Jacobian matrix of the vector field f(x) and v is a vector of the tangent bundle. By
taking the scalar product of the left- and right-hand side of Eq. (4) with v, it follows that
djvj2

dt
¼ 2ðJv; vÞ ¼ 2ðJv; vÞ

jvj2
jvj2 ð5Þ
where jvj indicates the norm of v, and (v, w) the scalar product between the two vectors v and w. Eq. (5) implies
that the stretching rate experienced by the generic vector v at point x is given by
xðx; vÞ ¼ ðJðxÞv; vÞ
jvj2

¼ ðJðxÞv̂; v̂Þ ð6Þ
or equivalently as xðx; vÞ ¼ ðJsðxÞv̂; v̂Þ, where v̂ ¼ v=jvj is the unit vector associated with v,
JsðxÞ ¼ ðJðxÞ þ JTðxÞÞ=2 is the symmetric part of JðxÞ, where JT is the transpose of J.

Let us now consider the dynamics of tangent and normal vectors to the invariant manifold3 W, which in
the present case is one-dimensional. The tangential and normal stretching rates xsðxÞ and xmðxÞ at any point
x 2W are given by
xsðxÞ ¼ ðJðxÞf̂; f̂Þ ð7Þ
xmðxÞ ¼ ðJðxÞn̂; n̂Þ ð8Þ
where f̂ ¼ f=jfj; n̂ ¼ n=jnj, and n ¼ ðf2;�f1Þ; f1 and f2 being the two entries of the vector field f. Note that Eq.
(7) stems from the fact that W is invariant for the dynamical system Eq. (3), and correspondingly the tangent
space at x 2W is spanned by the vector field fðxÞ itself.

The tangential and normal stretching rates provide a local (pointwise) way to characterize stretching
dynamics and, as a byproduct, the dynamics within invariant manifolds. Let sx0

ðtÞ and mx0
ðtÞ be the vectors

evolved at time t starting from sð0Þ 2 TWx0
and mð0Þ 2 NWx0

, respectively, and let Pm
x be the normal projector

at a point x, which maps any vector into its orthogonal component to TWx. It follows from Eq. (5) after some
algebra4 that
nceforth, given an invariant manifold W, the normal sub-bundle, i.e. the orthogonal complement to its tangent sub-bundle TW, is
ed with the symbol NW. Therefore, TWx and NWx are the tangent and the normal subspaces at the point x 2W, respectively.
. (10) describing the dynamics of normal components can be simply derived as follows. Consider the dynamics of a generic vector v,
g from a generic initial vector v0 possessing nonvanishing components both in the central (spanned by f) and in the normal
ces. For any time t > 0, let vðtÞ ¼ /�t ðzÞv0, where /t is the phase flow and /�t ðzÞ ¼ o/tðzÞ=oz. The vector vðtÞ can be expressed as
þ n, where f ¼ fð/tðzÞÞ is the vector field, a is a scalar depending on time and nðtÞ ¼ Pm

/tðzÞ½vðtÞ�, is the normal component of v. By
ion, both v and f satisfy the equation for vector dynamics dv=dt ¼ Jv and df=dt ¼ Jf. By differentiating the expression for v with
t to time and substituting into it the expressions for the time derivatives of v and f, it follows that dn=dt ¼ Jn� fda=dt. The latter
on implies that the normal sub-bundle is not invariant because of the presence of the the extra term fda=dt that appears aligned in
ngential direction. In order to get rid of this term, one can take the scalar product with respect to n, so that
; nÞ ¼ ðJn; nÞ � da=dtðf; nÞ. By considering that, by definition, ðf; nÞ ¼ 0, the latter expression implies that

djnj2

dt
¼ 2ðJn̂; n̂Þjnj2 ) jnðtÞj ¼ jnð0Þj exp

Z t

0

xmðzðt0ÞÞdt0
� �

xm ¼ ðJn̂; n̂Þ and n̂ ¼ n=jnj. A similar procedure can be followed for deriving Eq. (9).



Fig. 1. Schematic evolution of normal and tangential vectors along an invariant one-dimensional manifold W. /t is the phase flow,
xðtÞ ¼ /tðx0Þ associated with Eq. (3).
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ðtÞj ¼ jsð0Þj exp

Z t

0

xsðxðt0ÞÞdt0
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ð9Þ

jPm
xðtÞ½mx0

ðtÞ�j ¼ jmð0Þj exp

Z t

0

xmðxðt0ÞÞdt0
� �

ð10Þ
where xðtÞ is the solution of the Cauchy problem associated with Eq. (3) and with the initial condition
xðt ¼ 0Þ ¼ x0. The geometrical meaning of Eqs. (9), (10) is depicted in Fig. 1. Observe that the normal pro-
jector Pm

xðtÞ is used in Eq. (10). This is essential because the normal sub-bundle is not invariant and, therefore,
the evolution of any normal vector introduces a component belonging to the tangent sub-bundle.

Tangential and normal stretching rates, estimated along an invariant manifold W, provide a pointwise
characterization of the dynamics of tangential and normal perturbations to the manifold W. From this obser-
vation it follows that a local characterization of normal hyperbolicity and the identification of the slow and
fast (and more generally of the unstable and stable) components of the dynamics on an invariant manifold can
be obtained by considering the behavior of normal and tangential stretching rates and their relative strength.

It is convenient to exemplify this observation via a numerical example. Consider the Semenov model for
thermal explosions [49,50], which represents the evolution of a first-order exothermic reaction in a perfectly
stirred batch system in the presence of heat exchange with the surrounding. In dimensionless form, the heat
and mass balance equations read [38]
e
dx
dt
¼ ðyqðxÞ � xdÞ; dy

dt
¼ �yqðxÞ ð11Þ
where x and y are the dimensionless temperature and reactant concentration, respectively, and
qðxÞ ¼ expðx=ð1þ bxÞÞ. The parameter b is the reciprocal of the Zeldovich number, i.e. of the dimensionless
activation energy, normalized with respect to the coolant temperature. We fix5 d ¼ 1; b ¼ 0:31, and let the
parameter e vary. This system has been thoroughly analyzed elsewhere [36] in terms of the structure of the
invariant slow manifolds, the bifurcations occurring by changing the parameter values and the way these
bifurcations affect slow manifold properties. For e < 1, the system possesses a unique global slow manifold6

Ws. Figs. 2(a) and (b) (bold lines) show the portion of the global slow manifold near the point x� for two val-
ues of e ¼ 10�3; 10�2.

Since the relative strength of normal to tangent perturbations is significant to qualify the properties of a
slow manifold, the stretching ratio rðxÞ:
rðxÞ ¼ xmðxÞ
xsðxÞ

; x 2Ws ð12Þ
provides a lumped local indicator of the normal-to-tangential stretching.7
e choice of the values for the parameter d and b is indeed immaterial in the present analysis. Any other choice for these parameter
would produce qualitatively similar results.

e global slow manifold is the heteroclinic connection between the equilibrium point x� ¼ 0 ¼ ð0; 0Þ and a saddle point at infinity
he saddle-point at infinity can be easily obtained by compactifying the system, i.e. by considering the Poincaré projection of Eq. (11)
sphere-at-infinity [52].
almost all the points x the stretching ratio is a bounded function of the position. However, there are points at which rðxÞ diverges.
merator xmðxÞ cannot diverge to infinity if the Jacobian is bounded. However, the denominator xsðxÞ can be equal to zero at any
t which the time derivative of the modulus of the vector field along the trajectory passing through it vanishes. This means that the
ation df=dt is orthogonal to the velocity f.
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The behavior of rðxÞ as a function of the x-coordinate along the global slow manifold Ws is depicted in
Fig. 3.

For e ¼ 10�3 (curve a in Fig. 3), the stretching ratio is strictly and uniformly greater than 1. This indicates
that, throughout the whole manifold Ws, normal vectors are contracted more sharply than tangential ones.
This phenomenon corresponds to a locally normally hyperbolic slow manifold, i.e. of a ‘‘well-behaved’’ slow
invariant manifold attracting nearby orbits, as can be observed from the phase-space plot depicted in Fig. 2(a).
On the contrary, for e ¼ 10�2 (Fig. 3, curve b) there exists a portion of the slow manifold (referred to as the
inverting zone), in the range x 2 ð0:52; 5:22Þ, for which rðxÞ < 1. In this interval, the contraction of normal per-
turbations is weaker than the tangential dynamics, and this affects orbit dynamics, as illustrated in the phase-
space plot depicted in Fig. 2(b): system orbits travel close but almost parallel to the slow manifold in the
inverting region.

In the perspective of model reduction, the dynamics in the neighborhood of the inverting region can hardly
be viewed as purely one-dimensional and ‘‘localized’’ on Ws, because the evolution of normal perturbations is
no longer faster than tangential evolution. Hence local normal hyperbolicity of Ws, viewed as a one-dimen-
sional and invariant manifold, is lost. This observation can be generalized to higher-dimensional systems,
which are the subject of the remainder of this article. In all the cases in which a local inversion at a point
x along a manifold Ws occurs in the behavior of normal-to-tangential stretching rates, a local slow manifold
WlocðxÞ at x can be defined by augmenting the dimensionality of Ws in order to accommodate, within the
now-augmented tangent bundle of WlocðxÞ, the slower or more unstable directions. This operation can be
viewed as a linear embedding of Ws into WlocðxÞ at x.

This two-dimensional example indicates that it is possible, and indeed convenient, to develop a stretching-
based approach aimed at: (i) quantifying, on a local basis, the properties of slow manifolds, (ii) identifying,
from a stretching-based viewpoint, the slow and fast (unstable/stable) components of the dynamics, (iii) devel-
oping simple and computationally efficient methods for model analysis and reduction grounded on the relative
strength of normal to tangential stretching rates.
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3. The stretching-based approach

In order to develop a stretching-based description of slow and fast components of a dynamic evolution
aimed at identifying approximate slow manifolds, it is necessary to generalize the concept of normal stretching
rates and their estimate for dynamical systems defined on a n-dimensional phase-space with n > 2. The next
subsection addresses this issue, and subsequently the stretching-based approach to model reduction is
introduced.

3.1. The n-dimensional case

This Section generalizes the characterization of normal hyperbolicity for manifolds defined in n-dimen-
sional phase spaces with n > 2. Let us first consider a one-dimensional manifold W (e.g. an orbit) of an
n-dimensional dynamical system. While the tangential stretching rate can be estimated according to Eq. (7),
the definition of normal stretching rates requires some more algebra and further additional observations.
A way of defining xmðxÞ is the following:
xmðxÞ ¼ max
n̂2NWxjn̂j¼1

ðJðxÞn̂; n̂Þ ð13Þ
where the maximum is taken over all the normal unit vectors belonging to the normal space NWx at x.
The estimate of xm and the consequent introduction of a spectrum of normal stretching rates can be per-

formed as follows. Let x 2W and fðxÞ be the vector field at the point. The first step is to obtain a basis
for NWx. Let h be the index corresponding to the maximum entry of fðxÞ ¼ ðf1; . . . ; fnÞ in absolute value:
h : jfhðxÞj ¼ max ) jfkðxÞj 6 jfhðxÞj; k 6¼ h ð14Þ

Let e1 ¼ ð1; 0; . . . ; 0Þ; e2 ¼ ð0; 1; . . . ; 0Þ, etc. be the unit vectors oriented towards the coordinate axes of the
phase space. If h 6¼ 1 choose
B ¼ ff̂ðxÞ; e1; e2; . . . ; eh�1; ehþ1; . . . ; eng ð15Þ

otherwise take
B ¼ ff̂ðxÞ; e2; e3; . . . ; en�1; eng ð16Þ

It is straightforward to see that the system of vectors defined by Eqs. (15) or (16) is by construction linearly
independent, and consequently it forms a basis for the tangent space TRn at x. The vector basis B can be made
orthonormal, by using e.g. the classical Gram–Schmidt procedure to obtain a new (orthonormal) basisbB ¼ fêhgn

h¼1, where ê1 ¼ f̂. As a byproduct, the system of vectors ê2; . . . ; ên spans the normal subspace
NWx, and can be used as a orthonormal basis for the normal subspace.

By expressing the Jacobian matrix with respect to the new basis bB, the new matrix representation for J
reads as
bJ ¼ T�1JT ¼ TTJT ð17Þ

where T is the matrix associated with the change of basis, i.e. such that bB ¼ IT where I is the identity matrix.
Due to the orthonormality of bB, the matrix T is a unitary matrix, i.e. such that TT ¼ T�1, where TT is the
transpose of T. Componentwise, the matrix bJ reads
ð18Þ
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As a visual aid, the matrix bJ in Eq. (18) is partitioned into four blocks. By definition, since ê1 ¼ f̂, any vector
n̂ 2 NWx admits a vanishing first entry n̂1 ¼ 0 so that the normal stretching rate associated with any n̂ is given by
8 It s
positiv
xðx; n̂Þ ¼
Xn

h¼2

Xn

k¼2

bJ h;kn̂hn̂k ð19Þ
and, therefore, solely the block bJnn in Eq. (18) matters in defining normal stretching rates. Consequently, the
maximum normal stretching rate corresponds to the maximum of the quadratic form Eq. (19) subjected to the
constraint
Xn

h¼2

n̂2
h ¼ 1 ð20Þ
This extremal problem, with the constraint expressed by Eq. (20), corresponds to the extremum of the qua-
dratic objective function
Xðn̂2; . . . ; n̂n; kÞ ¼
Xn

h¼2

Xn

k¼2

bJ h;kn̂hn̂k � k
Xn

h¼2

n̂2
h � 1

 !
ð21Þ
where k is a Lagrange multiplier. This extremal problem leads to the system of equations
oX
on̂h
¼ 0; h ¼ 2; . . . ; n )

Xn

k¼2

bJ h;k þ bJ k;h

2

" #
n̂k ¼ kn̂h; h ¼ 2; . . . ; n ð22Þ
Therefore, the estimate of xm reduces ultimately to an eigenvalue/eigenvector problem for the ðn� 1Þ � ðn� 1Þ
symmetric matrix bJs, the entries of which are
bJ s
h�1;k�1 ¼

bJ h;k þ bJ k;h

2
; h; k ¼ 2; . . . ; n ð23Þ
Since bJs is symmetric, it possesses real eigenvalues lh, that can be ordered in a nonincreasing way, i.e.
l1 P l2 P � � �P ln�1. The associated unit eigenvectors r1; . . . ; rn�1 are mutually orthonormal (if the eigen-
values are distinct), and form a basis for NWx. Moreover each eigenvector rh generates a one-dimensional
subspace NWx;h 	 NWx so that the ðn� 1Þ-dimensional normal subspace can be generated as the direct
sum of each, i.e. NWx ¼ �n�1

h¼1NWx;h.

The spectrum of eigenvalues of bJs coincides with the pointwise normal stretching rate spectrum
RmðxÞ ¼ fxm;hðxÞgn�1
h¼1 ¼ flhg

n�1
h¼1 ð24Þ
The value of xmðxÞ defined by Eq. (13), therefore, is the largest eigenvalue of bJs,
xmðxÞ ¼ xm;1ðxÞ ¼ l1 ð25Þ

and the corresponding direction of maximum normal stretching is spanned by r1 2 NWx;1. The second eigen-
vector r2 2 NWx;2 is associated with the maximum normal stretching rate xm;2ðxÞ ¼ l2 within �n�1

h¼2NWx;h, i.e.
within the orthogonal complement to TWx � NWx;1. Analogously, the generic normal stretching rate xm;‘ðxÞ,
with ‘ 6 n� 1, is the maximum over the normal subspace �n�1

h¼‘NWx;h.
It should be observed that recent ILDM-based approaches have introduced symmetrized versions of the

Jacobian matrix in order to simplify the computation of approximate invariant manifolds [8,47]. Gorban
and Karlin [8] suggest the use of the symmetrized Jacobian Jsym ¼ ðJþ JTÞ=2, and propose a Symmetrized
Entropic ILDM (SEILDM), in which the local Jacobian matrix is substituted by the symmetrized form
Jsym

e ¼ ðJþH�1
c JTHcÞ=2, where Hc is the Hessian matrix of a Lyapunov function near the equilibrium. This

approach applies solely near a stable equilibrium point xe, fðxeÞ ¼ 0. Bykov et al. [47] propose the TILDM
method, in which the ILDM-basis vectors are replaced by the eigenvectors8 of the symmetric matrix M ¼ JTJ.
hould be observed that the eigenvalues of the symmetric matrix M are the singular values of J; by construction, they are all real and
e, this latter property preventing us to extract any information about the local stability properties of the system.
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There are, however, some important differences between Eq. (23) and these approaches. The main difference
is that Eq. (23) derives from a geometric principle: consider the normal perturbations to the driving direction
f̂ðxÞ at x, and obtain in the normal subspace the directions of maximum normal stretching. Observe that these
directions are not the directions of maximum stretching for J (which correspond to the eigenvectors of
ðJþ JTÞ=2), but the directions of maximum normal stretching restricted to the normal subspace. This is
the reason why the symmetrization is not performed over the whole Jacobian matrix but solely on a portion
of it, after a suitable change of basis. This geometric perspective is not present in the other symmetrization
approaches, in which the focus is mainly algebraic (to get rid of complex conjugate eigenvalues/eigenvectors
of the Jacobian), while it represents the core of the current analysis (see further Section 5 and the development
of a stretching-based reduction strategy).

The extension to higher-dimensional manifolds is straightforward, and follows the same approach devel-
oped above. Let W be a m-dimensional ðm > 1Þ manifold, invariant for the dynamical system Eq. (3), embed-
ded in an n-dimensional phase space. Let t1ðxÞ; . . . ; tmðxÞ be an orthonormal system of vectors spanning the
tangent space of TWx at the point x 2W. This tangent basis can be completed with a system of n� m ortho-
normal vectors e1; . . . ; en�m belonging to the orthogonal complement NWx.

Therefore, B ¼ ft1ðxÞ; . . . ; tnðxÞ; e1; . . . ; en�mg is an orthonormal basis for TRn. By projecting the dynamical
system on this local basis, the transformed Jacobian matrix bJ can be partitioned into the four blocksbJtt; bJtn; bJnt and bJnn (see Eq. (18)) and the the normal stretching rates can be obtained by considering the qua-
dratic form associated with the ðn� mÞ � ðn� mÞ matrix bJnn.

The latter generalization allows us to define the concept of local normal hyperbolicity and how it relates to
the theory of normal hyperbolicity introduced at the beginning of Section 2. The concept of normal hyperb-
olicity can be formulated at a local level, by introducing the following definition. An m-dimensional manifold
W, invariant and exponentially attracting for the n-dimensional dynamical system Eq. (3) (with n > m) is
locally normally hyperbolic at x 2W, if there is a s > 0 such that the linear map D/s associated with the
phase flow /t for t ¼ s generated by the vector field fðxÞ contracts vectors of Ns more sharply than vectors
of TW. The time s depends in general on x. If this property holds for any x 2W, then the manifold W is
uniformly locally normal hyperbolic. Since, this definition holds locally, it can be formulated in terms of
stretching rates.

Specifically, let W be an m-dimensional manifold passing through x, let xs;1ðxÞ; . . . ;xs;mðxÞ be the maxi-
mum tangential stretching rates experienced by vectors belonging to TWx and xm;1ðxÞ; . . . ;xm;n�mðxÞ the cor-
responding maximum normal stretching rates obtained as discussed above. Both xs;1ðxÞ; . . . ;xs;mðxÞ, and
xm;1ðxÞ; . . . ;xm;n�mðxÞ are ordered in a nonincreasing way. The general criterion of local normal hyperbolicity
implies that
xs;mðxÞ > xm;1ðxÞ ð26Þ

i.e. that at least the smallest tangential rate is greater than the largest normal rate. If xm;1ðxÞ < 0 this implies
locally, i.e. in a neighborhood of x, that normal perturbations decay faster than tangential ones.

On the other hand, the theory of normal hyperbolicity implies the splitting of the tangent space expressed
by Eqs. (1) or (2), which is to be interpreted as a global, not local, decomposition. By considering the case of
linearly stable manifolds, such that Eq. (2) applies, normal hyperbolicity implies a condition on the global evo-
lution of normal and tangent vectors to W. For any normal vector mð0Þ 2 NWx0

, its evolution mx0
ðtÞ at time t,
mx0
ðtÞ ¼ mx0;mðtÞ þ mx0;sðtÞ ð27Þ
where mx0;mðtÞ 2 NWxðtÞ; mx0;sðtÞ 2 TWxðtÞ is such that
jmx0;mðtÞj ¼ jPxðtÞ½mx0
ðtÞ�j 6 Cme�kmtjmð0Þj ð28Þ
where Cm; km > 0. At the same time, the evolution of any tangent vector sð0Þ 2 TWx0
satisfies the inequality
jsx0
ðtÞj 6 Cse

kstjsð0Þj ð29Þ

where Cs > 0, and ks can be either positive or negative. In any case for generic normal and tangential vectors
normal hyperbolicity implies that
ks > �km ð30Þ



1452 A. Adrover et al. / Journal of Computational Physics 225 (2007) 1442–1471
which essentially means that normal vectors contract more ‘‘sharply’’ than vectors belonging to the tangent
sub-bundle to W. We observe, however, that the constants Cm and Cs entering Eqs. (28), (29) may attain val-
ues greater than 1. This could imply, solely on a local level, that normal vectors may grow, i.e. normal vector
dynamics may be unstable (or slower than tangential dynamics), albeit linear stability and normal hyperbo-
licity of the manifold being guaranteed.

Clearly, local normal hyperbolicity implies a much weaker statement on the evolution of normal and tan-
gential perturbations to W, namely the fact that normal vectors locally experience stretching rates that are
smaller than the stretching rates characterizing tangent vectors to W.

3.2. Normal stretching spectrum and model reduction

The analysis of the normal stretching rates can be used for model diagnostics and reduction of complex
systems. In order to address this issue, consider a dynamical system Eq. (3) defined in Rn and a generic point
x of the phase space. At the point x one may consider the orbit passing through the point, and define the tan-
gential stretching rate xsðxÞ and the normal stretching spectrum RmðxÞ ¼ fxm;1ðxÞ; . . . ;xm;n�1ðxÞg ordered in a
nondecreasing way and defined in Section 3.1. From the relative strength of the elements of RmðxÞ compared to
the tangential rate xsðxÞ, simple criteria for model decomposition can be inferred by exploiting the concept of
local normal hyperbolicity.

Indeed, the tangential stretching rates yield the actual characteristic time scale tcðxÞ ¼ 1=xsðxÞ, the local
driving time scale that should be compared with the time scales associated with the evolution of normal per-
turbations, represented by the normal spectrum RmðxÞ.

Suppose that xsðxÞ < 0 and that xm;1ðxÞ < xsðxÞ. This implies that all the normal perturbations decay fas-
ter than the driving time-scale tcðxÞ associated with the vector field. Consequently, the orbit passing through
the point x can be viewed locally (i.e. in a neighborhood of the point x itself) as a one-dimensional invariant
normally hyperbolic manifold for the dynamical system Eq. (3).

On the contrary, let us suppose that the first m > 0 normal stretching rates are greater than xs. This means
that the normal perturbations in the directions spanned by the corresponding eigenvectors are either locally
unstable (if the corresponding stretching rates are positive) or locally slower (for xm;1 < 0) than the character-
istic time-scale associated with the decay of the intensity of the vector field, and expressed by the reciprocal of
the tangential stretching rate. This implies that the one-dimensional invariant manifold passing through x

ceases to be locally normally hyperbolic.
In the latter case, we can define in the neighborhood of x a ðmþ 1Þ-dimensional embedding manifold

WlocðxÞ which indeed is locally normally hyperbolic, by constructing its tangent space by means of the vector
f̂, parallel to the vector field, and the vectors s1; . . . ; sm, where
sh ¼ Trh; h ¼ 1; . . . ;m ð31Þ

are the eigenvectors associated with the first m directions of maximum normal stretching expressed in the
canonical basis e1; . . . ; en and T is the matrix associated with the change of basis, Eq. (17).

In other words, the tangent subspace of WlocðxÞ is spanned by the vector field itself and by the vectors asso-
ciated with those normal perturbations, the stretching rates of which are greater than xsðxÞ.

The concept described above is the starting point for model diagnostics and reduction of complex dynam-
ical systems, since it performs locally a classification of the slow and fast (unstable/stable) modes of the
dynamics. The main issue in this classification is that the concept of slow and fast modes depends locally
on the central time-scale tc i.e. on the local rate of tangential evolution along the orbits. Slow/unstable modes
correspond to normal perturbations along those directions possessing a normal stretching rate greater than xs.
Faster/more stable modes are those associated with normal rates smaller than xs. Therefore, the tangential
stretching acts as a threshold by setting the pace of what is locally slow or fast. A byproduct of this approach
is the possibility of defining the dimension N locðxÞ of the local slow manifold WlocðxÞ, from the condition
N locðxÞ ¼ mþ 1; m : xm;mðxÞP xsðxÞ; xm;mþ1ðxÞ < xsðxÞ ð32Þ

The criterion Eq. (32) for defining N locðxÞ should be commented further. Essentially, it means that the behav-
ior of the system near x can be approximated by means of a N locðxÞ-dimensional manifold WlocðxÞ which is
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locally normally hyperbolic. Such local approximation is intrinsically not invariant, since normal vectors asso-
ciated with the maximum normal stretching rates are not invariant for the vector dynamics expressed by Eq.
(4). The lack of invariance is the trade-off to be paid in order to develop a simple computational method for
model simplification and reduction. The criterion expressed by Eq. (32) proves to be a safe local criterion to
ascertain that in the neighborhood of x normal perturbations are ‘‘overwhelming’’ in comparison to the
dynamics of vectors tangent to WlocðxÞ. Moreover, a complete characterization of the normal perturbations
and of their influence on the dynamics can be achieved by examining the spectrum of normal stretching rates.
Particularly interesting is the stretching rate analysis for chemical kinetics in the presence of conservation laws
(induced by stoichiometric constraints). This case is thoroughly analyzed in Appendix A.

4. Numerical examples and stretching analysis

This Section addresses the stretching-based characterization of dynamical systems by considering several
prototypical models to illustrate it.

4.1. Reaction–diffusion in a porous catalyst

In order to illustrate the stretching-based analysis, consider a classical reaction–diffusion equation
9 We
order d
follow

where
mental
algorit
otc ¼ o2
xc� /2c

Km þ c
; cjx¼1 ¼ 1; oxcjx¼0 ¼ 0 ð33Þ
where o
m
x c ¼ o

mc=oxm, defined on x 2 ð0; 1Þ. This equation corresponds to the spatially one-dimensional
approximation for a catalytic process within a porous solid catalyst, the reaction rate of which is expressed
by a Langmuir–Hinshelwood kinetics. In Eq. (33), /2 is the square of the Thiele modulus, which is the ratio
between the characteristic diffusion time to that of reaction. Let cjt¼0 ¼ 0, i.e. no reactant is initially present
within the pore. Stretching-based analysis has been performed on a discretization of Eq. (33) by adopting a
finite-difference scheme with n ¼ 100 internal points.9 Fig. 4 summarizes the result of the stretching analysis
adopted a three-points finite-difference approximation of the Laplacian and a forward finite-difference approximation of the first-
erivative entering the boundary condition at x ¼ 0. The resulting set of n ODEs for the n time dependent variables fchgn

h¼1 is the
ing:

dc1=dt ¼ ðc2 � c1Þ=Dx2 � /2c1=ðKm þ c1Þ
dch=dt ¼ ðchþ1 � 2ch þ ch�1Þ=Dx2 � /2ch=ðKm þ chÞ; h ¼ 2; . . . ; n

cnþ1 ¼ 1 and Dx ¼ 1=ðnþ 1Þ. n ¼ 100 internal points for the finite-difference discretization ensure a good resolution of the funda-
length scales of the systems, for all the time instants. The set of ODEs has been integrated by means a fourth-order Runge–Kutta

hm.
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for this system as it shows the behavior of �xs (curve a), �xm;h (curves b–e) and Nloc (line f) along a generic
trajectory.

At short time scales, the initial reactant profile is discontinuous, since boundary and initial conditions do
not match continuously at x ¼ 1, hence the driving time scales, controlled by the action of the Laplacian oper-
ator, are very small. Almost all the normal modes are slower than tc, and N loc ’ n. As time increases, high
frequency modes relax, and Nloc monotonically decreases up to N loc ¼ 1 for large t. This phenomenon is
clearly depicted in Fig. 4, where the staircase-like profile for Nloc (curve f) corresponds to the progressive extin-
guishment of all the remaining normal modes up to t ¼ t1, starting from which solely the dominant mode pre-
vails (N loc ¼ 1), and all the normal perturbations are extinguished. Each jump in the staircase-like profile for
Nloc corresponds to the occurrence of the condition �xm;h > �xs at the time instant th, h ¼ n� 1; . . . ; 1, which
corresponds to the monotone relaxation of the system dynamics onto lower-dimensional slow manifolds of
dimension h. Only the last four time instants th, h ¼ 1; . . . ; 4 are shown in Fig. 4.

4.2. Low-dimensional chaotic dynamical systems

Stretching analysis applies to generic dynamical systems, including those exhibiting complex persistent
oscillations such as chaotic models. To highlight this issue, consider the classical Lorenz system [53], which
is the prototype for low-dimensional chaos in smooth time-continuous dynamics [54]
Fig. 5.
line) a
_x ¼ rðy � xÞ
_y ¼ rx� y � xz

_z ¼ xy � bz

ð34Þ
where _x ¼ dx=dt. Fig. 5(a) depicts the Lorenz attractor for r ¼ 10; r ¼ 28 and b ¼ 8=3, while Fig. 5(b) depicts
the behavior of the tangential and normal stretching rates as a function of time t along a trajectory starting
from a point on the Lorenz attractor. The Lorenz system has been integrated by means of a fourth-order
Runge–Kutta algorithm. As expected, the stretching rates oscillate following the chaotic nature of the limit
set. Specifically, it can be observed that for almost all the time instants the tangential stretching rate (depicted
with a bold line) is greater than the second normal stretching rate xm;2, and this implies N loc ¼ 2 for almost all
the times. We also observe that the number N+ of positive stretching rates is always smaller than or equal to 2,
since xm;2 < 0 uniformly. The numbers Nloc and N+ will be used in the remainder of this article to develop
criteria for model reduction of oscillating/chaotic dynamics (see Section 5).

Starting from the local definition of normal and tangential stretching rates, it is possible to introduce global
quantities, obtained by averaging over time
hxsiðtÞ ¼
1

t

Z t

0

xsð/t0 ðx0ÞÞdt0; hxm;hiðtÞ ¼
1

t

Z t

0

xm;hð/t0 ðx0ÞÞdt0; h ¼ 1; . . . ; n� 1 ð35Þ
The limit for t!1 of these averages defines n real numbers that will be referred to as the pseudo-Lyapunov
tangential/normal exponents
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Ks ¼ lim
t!1
hxsiðtÞ; Km;h ¼ lim

t!1
hxm;hiðtÞ ð36Þ
Such pseudo-Lyapunov spectrum is not an invariant property of dynamical systems, since the normal directions
of maximum stretching are not invariant. Therefore, it should not be confused with the Lyapunov spectrum
that is defined by Oseledec’s theorem [55] by means of the stretching/contracting behavior within invariant
sub-bundles. More precisely, the spectrum of Lyapunov exponent emerges from the representation of the tan-
gent bundle as the direct sum of invariant sub-bundles, and the Lyapunov exponents are the stretching expo-
nents associated with the vector evolution within each of these invariant sub-bundles. The application of these
concepts in model reduction is given in [14,56]. The stretching-based method makes no use of global invariant
properties within the tangle bundle, but rather analyzes the local tangential and normal stretching rates point-
wisely. This is the main difference of the SBR method, with respect to other methods such as NTDRB [14] or
the method by Mease and Topcu [56], the core of which is the determination of the invariant sub-bundles (or
filtrations), which represent the most suitable geometrical setting for expressing the timescale-properties of a
dynamical system. Consequently, the definition of the pseudo-Lyapunov exponents is conceptually different
from the spectrum of Lyapunov exponents. Solely qualitative connections between these two spectra can be
derived, as discussed below (see Eqs. (37) and (38)).

Although the normal pseudo-Lyapunov quantities are not invariant exponents in the meaning of Oseledec’s
theorem, they may give useful information about global dynamics. Fig. 6 depicts the behavior of the averaged
tangential and normal stretching rates for the Lorenz system.

The values for the pseudo-Lyapunov exponents10 are: Ks ¼ 0;Km;1 ¼ 0:986;Km;2 ¼ �14:65. These values
should be compared with the true Lyapunov spectrum KLyap;h, h ¼ 1; 2; 3, which in this case is given by
KLyap;1 ¼ 0:90
 0:005;KLyap;2 ¼ 0;KLyap;3 ¼ �14:56
 0:005 [57]. The pseudo-Lyapunov exponents are suffi-
ciently close to the correct Lyapunov spectrum. Moreover, it is important to observe that for any dynamical
system
Ks þ
Xn�1

h¼1

Km;h ¼ hTrðJÞi ¼
Xn

h¼1

KLyap;h ð37Þ
where hTrðJÞi is the time average of the trace of the Jacobian along a generic trajectory.11

In the case of the three-dimensional Lorenz model, Eq. (37) implies Km;1 þ Km;2 ¼ KLyap;1 þ KLyap;3 ¼
�r� b� 1. A second property of the pseudo-Lyapunov spectrum is
Km;1 P max
h¼1;...;n

KLyap;h ð38Þ
r dynamical systems possessing a periodic/aperiodic/chaotic attractor the tangential pseudo-Lyapunov number equals zero. This
from the fact that the tangent sub-bundle for vector dynamics is spanned by the vector field itself which, being bounded in norm
the attractor, expresses neither a vector contraction nor elongation.
. (37) for the pseudo-Lyapunov exponents derives directly from the following property of the tangential and normal stretching rates

n�1
h¼1xm;h ¼ TrðJÞ. This property of the stretching rate spectrum can be simply derived by observing that TrðJÞ ¼

Pn
h¼1ðJwh;whÞ,

fwhgn
h¼1 is any orthonormal basis, and by applying it to the stretching-based orthonormal basis fêhgn

h¼1.
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i.e. the first normal pseudo-Lyapunov exponent is always greater than the maximum Lyapunov exponent of
the system. The maximum Lyapunov exponent corresponds to the average stretching rate experienced along
the most unstable invariant sub-bundle. At each point, this stretching rate is less than or at most equal to the
local maximum normal stretching rate. This property is rather significant in terms of the stretching-based esti-
mate of the embedding dimension of a dynamical system’s global attractor (see Section 5). In particular, due to
the lack of invariance of the normal sub-bundles, it is to be expected that the positive portion of the pseudo-
Lyapunov spectrum is systematically larger than the corresponding portion of the Lyapunov spectrum. The
number NþpL of positive pseudo-exponents will also be used in Section 5 to develop criteria for model
reduction.

4.3. Chaotic reaction–diffusion models

As a typical reaction–diffusion model exhibiting a rich dynamic structure, we consider a model proposed by
Elezgaray and Arneodo [58], henceforth referred to as the EA model for short. The EA model is a system of
two coupled nonlinear partial differential equations in uðx; tÞ; vðx; tÞ; x 2 ½0; 1�, representing the concentrations
of two chemical species in a isothermal explosive kinetics displaying intermittent bursting for some values of
the parameters
Fig. 7
reactio
four li
otu ¼ Do2
xuþ e�1½v� ðu2 þ u3Þ�

otv ¼ Do2
xv� uþ a

ð39Þ
where D is the dimensionless diffusivity, and a, e are positive parameters. The system Eq. (39) is equipped with
boundary conditions on the concentration values
uð0; tÞ ¼ uð1; tÞ ¼ ub ¼ �2; vð0; tÞ ¼ vð1; tÞ ¼ vb ¼ �4; t > 0 ð40Þ

This system of PDEs has been analyzed numerically by Elezgaray and Arneodo [58] by means of finite-
differences, by Adrover et al. [59] by means of collocation methods, and by Graham and Kevrekidis [60] by
means of spectral methods, by considering the bifurcation properties of the system with respect to the dimen-
sionless diffusivity D 2 ½0:02; 0:04� and keeping the other parameters fixed (a ¼ 0:01; e ¼ 0:01). In the present
work, we adopt a simple finite-difference approach. As for the reaction–diffusion model Eq. (33), we adopted a
three-points finite difference approximation of the Laplacian operator. The resulting set of ODEs has been
integrated by means a fourth-order Runge–Kutta algorithm, thus obtaining a system of n ¼ 2N ODEs in
the 2 N variables fuigN

i¼1 and fvigN
i¼1, with N ¼ 31.

For low and high values of D, the system stabilizes onto ignited and extinguished steady states, respectively.
Intermediate values of D correspond to operating conditions that allow competition between the tendency to
ignition due to the nonlinear kinetics, and the extinguishing behavior at the boundaries. This induces complex
oscillations and intermittent bursting in the center of the spatial domain.
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Figs. 7(a)–(c) show the two-dimensional projection of the phase-space portrait vðx ¼ 1=2; tÞ vs uðx ¼ 1=2; tÞ
of the asymptotic behavior of the Arneodo–Elezgaray reaction–diffusion model for three different values of D,
corresponding to a period-one limit cycle (D = 0.0320), a period-four limit cycle (D = 0.03224) and a chaotic
attractor (D = 0.03228).

Figs. 8–10 display the dynamics and the stretching properties of the EA model for several values of dimen-
sionless diffusivity D giving rise to the attractors depicted in Fig. 7. Specifically, panels(a) depict the time
behavior of the concentration at the mid-points, panels(b) the time evolution of the tangential stretching rate,
and panels(c) the number of active modes Nloc. According to the local normal hyperbolicity assumption the
number of active modes Nloc (solid lines) is given by N loc ¼ N m þ 1, where Nm is the number of normal stretch-
ing rates xm;h such that xm;h P xs; h ¼ 1; . . . ;N m. In the same panels, N+, i.e. the number of tangential and nor-
mal directions characterized by positive stretching rates, is also depicted (dashed lines).
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In all these three cases, a peak in the number of active (relevant) modes occurs whenever the tangent
stretching rate exhibits a sudden decrease and attains very low negative values. Since xs defines locally the
relevant characteristic time scale, a decrease of xs implies that many normal modes becomes locally active (rel-
evant). On the contrary, the number of modes associated with positive (unstable) stretching rates N+ is prac-
tically constant along the system trajectories and oscillates between 5 and 7. This corresponds to the fact that
the number of positive pseudo-Lyapunov normal exponents NþpL equals 5 in all the three cases analyzed. These
results will be further discussed in Section 5, in connection with the application of the stretching-based reduc-
tion method.

5. The stretching-based reduction method

This Section addresses an embedding-type approach to model reduction based on the stretching character-
ization of local dynamics.

Stretching-based analysis provides an alternative approach to model reduction, which is more closely
related to local embedding methods, addressed e.g. by Robinson in Chapter 16 of his monograph [24]. Essen-
tially, the rationale underlying the results and the ‘‘utopian theorems’’ sketched by Robinson consists in that
the computational shortcomings of inertial manifold theory [23,26–28], as well as of any reduction theory rely-
ing on the explicit representation of the ‘‘relevant’’ (slow, inertial) invariant manifold as a huge system of non-
linear equations of state12 could be circumvented by attempting to find a global linear embedding containing
the global attractor A. The dimension of the embedding should be close to the Takens’ limit
m ¼ b2dimHðAÞ þ 1c [61], where dimHðAÞ is the Hausdorff dimension of the global attractor A, and bac is
the upper integer of a.

The Robinson scientific program to model reduction consists of three main requisites: (i) linear embedding
of the dynamics, which is (ii) globally defined, and (iii) possesses the smallest possible dimension compatible
with Takens’ and Whitney’s embedding theorems [61]. We shall see below that the application of stretching-
based analysis to the problem of model reduction provides a way to meet some of these requirements.
EA reaction–diffusion model (n¼62 ODEs) atD= 0.03228 (chaotic attractor): (a)uð0:5;tÞandvð0:5;tÞvst; (b)xsvstalong thesystem trajectory; (c)Nloc(solid line) andN+(dashed line) vstalong the system trajectory.ILDM/CSP approach[3,4,6,7]to model reduction leads to the construction of a differential-algebraic reduced modelfor the dynamics, formed by a system of ordinary differential equations (expressing the evolution of a subset of ‘‘slow’’ variables) coupled

‘‘equations of state’’ expressing the approximate slow manifold (formally a constraint for the ‘‘fast’’ variables).1458A. Adrover et al. / Journal of Computational Physics 225 (2007) 1442–1471
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Let x0 be a point along a system trajectory at time t ¼ t0. Stretching-based analysis at point x0 defines the
actual driving time scale tcðx0Þ as the reciprocal of the tangential stretching rate tcðx0Þ ¼ ½xsðx0Þ��1 associated
with the central direction f̂ðx0Þ. It further defines an ordered system of mutually orthogonal directions
n̂hðx0Þ; h ¼ 1; . . . ; n� 1, normal to f̂ðx0Þ and associated with the local directions of maximum stretching.
The characteristic time scales tm;hðx0Þ associated with the evolution of the normal perturbations are given
by the reciprocal of the normal stretching rates,
tm;hðx0Þ ¼
1

xm;hðx0Þ
; h ¼ 1; . . . ; n� 1 ð41Þ
Observe that these time scales possess a sign, i.e. they can attain both positive and negative values. A negative
value for tm;hðx0Þ indicates that the corresponding normal perturbation decays, while a positive value corre-
sponds to a locally unstable normal perturbation.

By adopting the criterion deriving from local normal hyperbolicity analysis, the relevant directions for
expressing local system dynamics in the neighborhood of x0 are those associated with the central direction
itself f̂, and with the first N loc � 1 normal perturbations, as in the condition Eq. (32). This criterion expresses
quantitatively the intuitive observation that the relevant directions in the neighborhood of x0 are those asso-
ciated with normal perturbations that are either slower or more unstable than the driving central time scale.

Let us indicate with ê1ðx0Þ ¼ f̂ðx0Þ, ê2ðx0Þ ¼ n̂1ðx0Þ; . . . ; êN loc
ðx0Þ ¼ n̂N loc�1ðx0Þ the unit vectors associated

with the first Nloc modes. In the neighborhood of x0, one can approximate the state vector xðtÞ as
xðtÞ ¼ x0 þ
XN loc

h¼1

nhðtÞêhðx0Þ ð42Þ
where nhðtÞ; h ¼ 1; . . . ;N loc, represents the local coordinates of a local linear embedding close to x0. Substitut-
ing Eq. (42) into system dynamics Eq. (3) yields
XN loc

h¼1

dnh

dt
êhðx0Þ ¼ f x0 þ

XN loc

h¼1

nhêhðx0Þ
 !

ð43Þ
which can be explicited with respect to dnk=dt by taking the inner product with respect to êkðx0Þ and enforcing
the orthonormality of this vector system,
dnk

dt
¼ êkðx0Þ � f x0 þ

XN loc

h¼1

nhêhðx0Þ
 !

; k ¼ 1; . . . ;N loc ð44Þ
The initial conditions on the local coordinates are
nkðt ¼ t0Þ ¼ 0; k ¼ 1; . . . ;N loc ð45Þ

The validity of Eq. (44) is intrinsically local, i.e. Eq. (44) applies in a small neighborhood of x0. The analysis of
the local time scales provides a quantitative estimate for the size of this neighborhood. Let
T min ¼ minN locðx0Þ�1

h¼1 fjtsj; jtm;hjg the minimum time scale amongst the relevant Nloc modes. Eq. (44) represents
a valid approximation for the local dynamics in the interval t 2 ½t0; t1Þ which is of order of magnitude of Tmin, i.e.
t1 � t0 ¼ cT min; c � Oð1Þ ð46Þ

where c is a constant of unit order of magnitude. In practical applications we chose c 2 ½0:5; 2�.

The Stretching-Based Reduction method (SBR for short) consists in the repeated application of the proce-
dure expressed by the following linear embedding:
xðtÞ ¼ xa þ
XN loc;a

h¼1

nðaÞh ðtÞê
ðaÞ
h ðxaÞ; t 2 ½ta; taþ1Þ; a ¼ 0; 1; 2;

dnðaÞk

dt
¼ ê

ðaÞ
k ðxaÞ � f xa þ

XN loc;a

h¼1

nðaÞh êa
hðxaÞ

 !
¼ gðaÞk ðnðaÞÞ; k ¼ 1; . . . ;N loc;a nðaÞk ðt ¼ taÞ ¼ 0;

taþ1 ¼ ta þ cT minðxaÞ ð47Þ
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where a is the counter in the repeated application of the procedure, N loc;a is the number of relevant local direc-
tion at xa, and x0; x1; . . . xa; . . . are the endpoints of system orbits at the time instants ta corresponding to the
switching from a local coordinate chart to the next.

The SBR method is, therefore, a local linear embedding method of the system’s dynamics whereby solely
the most unstable/slow directions, compared with the relevant time scale, are considered. A local coordinate
system is established along the trajectory, under the assumption that the system’s evolution is confined into the
span of the first Nloc modes, including the central direction of the initial point.

It is clear that such reduction procedure is particularly simple as it does not require the use of any equation
of state, involving exclusively the integration of a reduced system of N loc;a ordinary differential equations for
the local coordinates nðaÞ1 ; . . . ; nðaÞN loc;a

. Therefore, this reduction procedure can be applied starting from a generic
point of the phase space. This means that it is absolutely not necessary that the initial condition be on a slow
manifold of some dimension.

5.1. Stiffness elimination

Classical simplification/reduction methods for complex chemical kinetics (ILDM or CSP) can be used to
eliminate stiffness by pruning the stiff components of the kinetics. Whenever model dynamics collapses onto
a lower-dimensional manifold, the exhausted fast modes, which are responsible for numerical stiffness, are
rejected, by projecting the dynamics onto the slower modes which describe the structure of the approximate
slow-dimensional manifold.

The SBR method also provides stiffness elimination, by confining local dynamics onto a lower-dimen-
sional linear embedding corresponding to the actual driving time scale (associated with the central direction)
and to the most unstable/slow time scales with respect to the central one. In order to ascertain this issue, it is
convenient to consider a simple prototypical three-dimensional linear system _x ¼ Ax, where the matrix A is
given by
A ¼
�1 �2 1

0 �10 4

0 0 �1000

0B@
1CA ð48Þ
This linear system is characterized by three negative eigenvalues k1 ¼ �1; k2 ¼ �10; k3 ¼ �100, and a signif-
icant gap (one/two orders of magnitude exists between consecutive time scales).

Fig. 11(a) depicts the behavior of the tangential (bold solid line), and normal stretching rates (dashed lines)
with reversed sign along the system orbit obtained from the reduced SBR model of the linear system Eq. (48).
As expected �xs progressively decreases and crosses first �xm;1, at a time instant t1 ’ 10�2 � Oð�k�1

3 Þ and
subsequently �xm;2 at a time instant t2 � Oð�k�1

2 Þ. This means that the relevant driving time scale expressed
by �1=xs, decreases progressively along system orbit. Correspondingly, the number of relevant modes Nloc

detected by the SBR method decreases from N loc ¼ 3, at the beginning of the trajectory, up to N loc ¼ 1, when
only the dominant mode associated with k1 ¼ �1 becomes significant.

A stiffness ratio can be defined as Rstiff ¼ xs=xm;N loc�1, whenever N loc P 2. Of course the reduced system
ceases to be stiff if N loc ¼ 1. Consequently, the progressive decrease of both �xs and Nloc depicted in
Fig. 11(a) and (b) indicates that the SBR method provides an effective stiffness reduction in the model equa-
tion, obtained by simply discarding the fastest normal modes from the local linear embedding.

As a further confirmation we analyze the eigenvalues ffigN loc

i¼1 of the N loc � N loc Jacobian JR;ðaÞ ¼ J R;ðaÞ
k;j of the

SBR reduced model Eq. (47):
J R
k;jðxÞ ¼

ogkðnaÞ
onðaÞj

¼
Xn

m¼1

Xn

p¼1

bek;mðxÞJ m;pðxÞbej;pðxÞ; k; j ¼ 1; . . . ;N loc;a ð49Þ
where J m;p ¼ ofm=oxp and xðtÞ ¼ xa þ
PN loc;a

h¼1 nðaÞh ðtÞê
ðaÞ
h ðxaÞ, along the system trajectory. Fig. 11(c) shows the

eigenvalues of JR;ðaÞ for the linear system under investigation confirming that, for N loc ¼ 2, the ratio of the larg-
est to the lowest eigenvalue for the SBR model is reduced by two decades with respect to the original system.
Stiffness elimination implies that the reduced model Eq. (47) can be numerically integrated by explicit methods
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and that the integration time-step is actually controlled by the accuracy required for the solution in the time
interval ½ta; taþ1Þ.

5.2. Different criteria for the dimension of the linear embedding

Let us further address the definition of practical criteria for the estimate of the number of relevant direc-
tions spanning the local linear embedding.

The first criterion (already considered) may be referred to as the Local Normal Hyperbolicity criterion
(LNH) and stems from the application of normal hyperbolicity concepts at a local level: it assumes Nloc as
the number of relevant directions (i.e. the central direction plus the normal directions that are slower/more
unstable than the central direction). In so doing, the ‘‘embedding subspace’’ of dimension Nloc may be con-
sidered as a locally normally hyperbolic embedding manifold.

For systems possessing nontrivial limit sets (such as limit cycles, chaotic attractors, etc.), it is possible to
provide other criteria, namely to choose the number of relevant directions forming the local linear embedding
as N+, i.e. as the central direction plus all the normal directions which are associated with positive stretching
rates. This criterion will be referred to as the Local Unstable Mode (LUM) criterion.

To give an example, Fig. 12 depicts the x� z projection of the reconstructed SBR attractor obtained by
enforcing the LNH criterion (panel A), and the LUM criterion (panel B) for the Lorenz system. In the latter
case Nþ ¼ 2 uniformly throughout the chaotic trajectory.

Both criteria provide a satisfactory reconstruction of the chaotic attractor for the Lorenz system (compare
Figs. 12(a) and (b) with Fig. 5(a)). Fig. 12(c) shows the behavior of Nloc along a chaotic trajectory on the limit
attractor. For almost all the time instants, N loc ¼ 2, with the exception of few localized spikes at which
N loc ¼ 3. These spikes correspond to the time intervals at which xm;2 > xs, observed in Fig. 5(b).

In the case of dynamical systems confined to periodic or chaotic attractors, it is possible to provide an alter-
native criterion, consisting in choosing the relevant modes for the local dynamics as those directions that are
locally associated with nonnegative pseudo-Lyapunov exponents. Let NþpL be the (constant) number of such
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Fig. 11. (a) Tangential (bold line) and normal stretching rates (dotted lines) with reversed sign as a function of time t along the system
orbit obtained from the reduced SBR model of the linear system Eq. (48). Starting point x0 ¼ ð100; 20; 70Þ. (b) Behavior of Nloc vs t for the
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modes. In this case, the relevant modes are locally bf ðx0Þ and the first NþpL � 1 normal modes associated with
nonnegative values of Km;h; h ¼ 1; . . . ;NþpL. This criterion will be referred to the the Pseudo Lyapunov Unstable
Mode (PLUM) criterion.

A detailed numerical analysis of the SBR method applied to PDEs and adopting the criteria described
above is developed in Sections 5.3 and 5.4. However, a general comparison of these three (LNH, NUM,
PLUM) criteria follows readily from their definitions.

The LNH criterion is certainly the safest of the three, and applies on equal footing for dynamical systems
relaxing towards an equilibrium point, or evolving within a nontrivial (periodic, chaotic) limit set. It is cer-
tainly the most conservative criterion in terms of the number of relevant modes, since N locðx0Þ is generally
greater than Nþðx0Þ or NþpL (see e.g. Figs. 8–10).

In the case of dynamical systems converging towards a stable equilibrium point, N locðx0Þ may be greater
than 1, even close to equilibrium. This is due to the fact that even in constant-coefficient linear dynamical sys-
tems, the coefficient matrix of which possesses all the eigenvalues with negative real part, some of the normal
stretching rates along system trajectories may be eventually positive, expressing the occurrence of a local
growth in the dynamics of normal perturbations.

The NUM and PLUM criteria apply to the dynamic evolution within periodic/chaotic attractors. The
NUM criterion is more restrictive than PLUM, and can be applied along system orbits without any a priori
knowledge of system dynamics. On the contrary, PLUM criterion requires a priori information on the spec-
trum of pseudo-Lyapunov exponents. Generically, Nþðx0ÞP NþpL, and, therefore, PLUM requires the local
integration of fewer variables. Both in NUM and PLUM criteria, the interval of validity of each local coor-
dinate chart is controlled by the reciprocal of the absolute value of the maximum stretching rate amongst the
vectors spanning the linear embedding.

To conclude this Section, we are able to comment the analogy between the SBR method and the Robinson
scientific project outlined at the beginning of this Section. With respect to the three main points of this pro-
gram, the SBR method provides: (i) an approximate linear embedding, (ii) which holds locally and not glob-
ally, and such that (iii) the dimension of each local coordinate chart is greater than the Takens limit. Empirical
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observations on several systems of PDE, indicate that for the dynamics confined onto the limit sets, the dimen-
sion of each local linear embedding is of the order of the Takens limit [45].

Although there are intrinsic differences between SBR and the ‘‘utopian’’ embedding program envisaged by
Robinson (which can be viewed as the perfect reduction method still to be figured out both in theory and in
practice), SBR provides a realistic and easy-to-implement strategy for model reduction of generic dynamical
systems, attempting to conform to this program.

5.3. PDE example I: the EA system

The EA reaction diffusion system described in Section 4.3 provides a valid model case to test the perfor-
mance of the SBR method. Fig. 13 shows the time behavior of the averaged normal stretching rates along
an orbit lying on the limit attractor of the EA system for D = 0.03228. For large t, this averages saturates
to the corresponding normal pseudo-Lyapunov exponent. The number of positive pseudo-Lyapunov expo-
nents is NþpL;m ¼ 5 so that NþpL ¼ 6 (since the central direction corresponding to Ks ¼ 0 should be included
as well). Throughout the range of diffusivities considered, we found Nþ ¼ 6 uniformly.

Consider the SBR method by enforcing the PLUM criterion. This choice determines the smallest number of
relevant local modes within each linear embedding, compared with NLH and NUM strategies.

As noted, the dimension of each local embedding is NþpL ¼ 6 uniformly, although each local basis changes
orientation. Within each local basis (i.e. for a fixed value of the counter a entering Eq. (47)), the reduced sys-
tem has been integrated by applying the fourth-order explicit Runge–Kutta integration algorithm for a time
horizon given by Eq. (46).

Fig. 14 shows the quantitative agreement between the trajectories of the original (full) system and of the
SBR model in the presence of limit cycles in the dynamics.

In the case of chaotic attractors, it is meaningless to perform a trajectory-based comparison, which should
retain validity solely for short time intervals compared with the maximum Lyapunov exponent of the system.
Instead, it is useful to consider global reconstruction properties, which can be qualitatively verified by analyz-
ing the phase plot of the limit attractor, as shown in Fig. 15 for the original (full) system (left panel) and the
SBR model (right panel).

5.4. PDE example II: diffusive-thermal instabilities in planar flames

Another challenging PDE test is represented by a diffusive-thermal model for planar flames. Premixed
flames with one-step chemistry can exhibit a variety of instabilities giving rise to rich dynamical behaviors.
Depending on the value taken by model parameters, such as the Lewis number Le, measuring the ratio of ther-
mal to mass diffusivity of the limiting (deficient) reactant, the flame can display cellular conformations (i.e.
departing from the planar solution) and/or pulsations [62]. Linear stability analyses [63] (as well as nonlinear
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analyses [64]) were carried out by examining solutions of the linearized flame equations stemming from trans-
verse perturbations about the steady planar solution. Flame instabilities have been understood in terms of
hydrodynamic and diffusive-thermal phenomena. The latter may lead to cellular flames when Le < 1 and to
pulsating flames when Le > 1. Particularly simple diffusive-thermal models, essentially reaction–diffusion
models, may be constructed to examine purely planar pulsating combustion, which can occur in premixed sys-
tems as well as in condensed phase systems [63].

In order to test the SBR method we restrict our attention to pulsating planar flames in premixed systems of
two reactants (one of which is deficient) with one-step irreversible Arrhenius kinetics, as described in [66] and
references therein. A moving coordinate system is also introduced, x ¼ z� zf ðtÞ, traveling at the flame speed
vf ¼ _zf ðtÞ, so that the flame front is ‘‘centered’’ in x ¼ 0 [65]. Let T and c be the dimensional temperature and
concentration of the deficient reactant, respectively, Tu and Tb the temperatures of the unburnt and burnt mix-
ture, and cu is the unburnt concentration. By introducing the dimensionless variables h ¼ ðT � T uÞ=ðT b � T uÞ
and Y ¼ c=cu, the dimensionless balance equations for h and Y are defined in ðx; tÞ 2 X� Rþ, where
X ¼ ½�‘; ‘�; ‘ ¼ 10, and x; t are the dimensionless space and time, and read
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othþ vf ðtÞoxh ¼ o2
xhþ xðh; Y Þ

otY þ vf ðtÞoxY ¼ Le�1o2
xY � xðh; Y Þ

ð50Þ
where the dimensionless reaction rate is given by
xðh; Y Þ ¼ Ze2

2Le
Y exp � Zeð1� hÞ

1� að1� hÞ

� �
ð51Þ
The dimensionless groups entering Eq. (50) are: the Lewis number Le, the dimensionless activation energy Ze

also referred to as the Zeldovich number, and a ¼ ðT b � T uÞ=T b. The flame speed vf ðtÞ can be defined as
vf ¼

R
X xdx.

Following [66], initial conditions are set equal to the Ze!1 solution, i.e. hðx; 0Þ ¼ 1 and Y ðx; 0Þ ¼ 0 for
x 2 ð0; ‘� and hðx; 0Þ ¼ ex and Y ðx; 0Þ ¼ 1� exLe for x 2 ½�‘; 0�. Dirichlet boundary conditions, compatible with
the given initial conditions provided ‘ is sufficiently large, are set at the inflow boundary, hð�‘; tÞ ¼ 0 and
Y ð�‘; tÞ ¼ 1, and zero flux conditions at the outflow boundary.

Eq. (50) was integrated in time using DVODE (with a time horizon as in Eq. (46) with c ¼ 1) and applying a
second-order finite volume discretization (see [67]) on a N ¼ 64 cells fixed nonuniform grid, refined locally
around x ¼ 0 so as to accommodate enough cells within the flame thickness. The discretized system of PDEs
Eq. (50) results into a system of 2N ¼ 128 ODEs of the form Eq. (3) in the variables fhigi¼1;N and fY igi¼1;N .
Henceforth we set Le ¼ 4, and let the Zeldovich number vary in the range Ze ¼ ð10; 13Þ. Specifically, we con-
sider three cases, Ze ¼ 10:2; 11:5; 13. Periodic solutions (limit cycles) were found for all the three cases, with a
period-doubling occurring within the interval ð11:5; 13Þ.

The upper portions of Figs. 16(a)–(c) display the flame speeds vf ðtÞ in the three cases considered. An anal-
ysis of the stretching rates along the limit cycles was performed to evaluate, according to the LNH and PLUM
criteria, the number of relevant modes Nloc and the number of positive pseudo-Lyapunov exponents NþpL. The
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lower portions of Figs. 16(a)–(c) display Nloc, which exhibits localized bursts in correspondence of flame speed
peaks, together with NþpL saturating to constant values.

A rather significant diagnostic indicator of the dynamics is the spectrum of pseudo-Lyapunov exponents
Km;h shown in Fig. 17, for 4 6 h 6 100 (the remaining values falling above and below the shown range13).
The positive part of the spectrum and in particular the number NþpL of positive pseudo-Lyapunov numbers
represents a measure of the embedding dimension of the attractor of the system which, in the present range
of Ze numbers is a limit cycle, i.e. a one-dimensional manifold. In the three cases considered we find
NþpL ¼ 10 at Ze ¼ 10:2;NþpL ¼ 11 at Ze ¼ 11:5;NþpL ¼ 14 at Ze ¼ 13. It is also significant to note that such val-
ues of NþpL were found to be independent of the number N of discretization cells (provided N is sufficiently
large for proper resolution). In other words increasing N leaves the upper (unstable) part of the spectrum
unchanged while adding stable modes to the lower part of the spectrum.

The SBR approach was used to reconstruct the solutions using the PLUM criterion, i.e. a number of modes
equal to the value of NþpL, which corresponds to roughly 10% of the original 128 modes (see the dotted lines in
13 The following maximum normal pseudo Lyapunov exponents were found: Km;1 � 30830 at Ze ¼ 10:2; Km;1 � 31526 at
Ze ¼ 11:5; Km;1 � 32048 at Ze = 11.5.
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Fig. 16(a)–(c)). Fig. 18(a) and (b) display the result of such reconstruction for the three values of the Zeldovich
number. The actual solutions and the reconstructed solutions are virtually indistinguishable, this in spite of
N locðtÞ being even far greater than NþpL, albeit only locally, during the periodic bursts of flame instability
(see Fig. 16).

The results of the present section and of Section 5.1 indicate that the SBR method, implemented on PDEs
even with the more ‘‘loose’’ mode selection criterion (namely PLUM) is able to provide a significant mode
reduction with an excellent quantitative and qualitative agreement in the evolution of the state variables
and in the reconstruction of the limit sets, both in chaotic and periodic conditions.

6. Concluding remarks

Local normal stretching rate analysis provides a simple and geometrically meaningful way to characterize
the instabilities and the time scales associated with normal perturbations compared to tangential dynamics
along a given manifold (orbit).

Starting from normal stretching rate analysis, a reduction method (SBR) has been developed, which makes
use of a local linear embedding of the dynamics with respect to a local coordinate chart associated with the
most unstable and/or slow normal stretching directions compared to the driving dynamic time scale.

The SBR method provides a simple and very promising reduction approach that applies both to large sys-
tems of ODEs or to systems of PDEs. In the case of reaction/diffusion model, the SBR approach considers the
reaction/diffusion operator as a single entity and does not perform any conceptual decoupling between the
reaction/diffusion time scales [22]. This makes it possible to achieve a significant reduction efficiency, as
described in connection with chaotic reaction/diffusion models and premixed oscillating flames.

The SBR method handles on equal footing relaxation dynamics towards an equilibrium point and asymp-
totic periodic/chaotic oscillations.

The numerical examples described in this article indicate that local linear embedding methods provide
an effective alternative to other methods of model reduction based on the explicit solution of the equations
of state for the approximate slow/inertial manifold. Future research will address the assessment of the
computational efficiency of this approach in forms of accuracy and optimization of the critical numerical
aspects. Two numerical/computational aspects should be investigated in detail: (i) specific integration
methods for the set of ODEs representing the dynamics of the local coordinates nðaÞ1 ; . . . ; nðaÞN loc;a

and, (ii) pos-
sible alternative and improved criteria for estimating the time interval ½ta; taþ1� of validity of each local
coordinate chart.
Appendix A. The role of conservation laws

The dynamic behavior of systems arising from chemical kinetic modelling is often characterized by the
occurrence of conservation laws that enforce stoichiometric constraints, which may depend on the initial con-
ditions. Therefore, the phase space of these systems is foliated with an uncountable family of lower-dimen-
sional stoichiometric manifolds. For a fixed combination of the initial conditions, system orbits lie on one
of these stoichiometric manifolds [68].

In order to clarify the role of conservation laws within the stretching-based approach, the classical Michae-
lis–Menten model for a simple enzymatic reaction in a batch system is considered: E þ S�ES;ES ! E þ P ,
where E, S, ES an P are the enzyme, the substrate, the enzyme–substrate complex, and the final product of the
reaction, respectively. Since the dynamics of product formation is decoupled from the remaining kinetic
scheme, the Michaelis–Menten model gives rise to a system of three ordinary differential equations
_xS ¼ �k1xExS þ k�1xES

_xES ¼ k1xExS � ðk1 þ kÞxES

_xE ¼ �k1xExS þ ðk1 þ kÞxES

ðA:1Þ
where xS, xES and xE are the substrate, enzyme complex, and free enzyme concentrations, respectively, and k1,
k�1, k the kinetic rate coefficients.



The three-dimensional system Eq. (A.1) admits a two-dimensional slow invariant manifold W2, depicted in
Fig. A.1 which, for small values of the ratio xE;0=xSð0Þ; xE;0 ¼ xEð0Þ þ xESð0Þ being the total initial enzyme con-
centration, is well approximated by the quasi-steady state result xES ¼ xExS=KM , where KM ¼ ðk�1 þ kÞ=k1 is
the Michaelis–Menten constant.

The system Eq. (A.1) is characterized by the conservation law
xEðtÞ þ xESðtÞ ¼ xE;0 ðA:2Þ

expressing enzyme conservation in all of its forms, i.e. either as a free enzyme or bound to the substrate to
form the complex ES. Of course, this conservation law can be enforced by directly substituting it within
Eq. (A.1), e.g. expressing xE as a function of xES and xE;0. In this way, a two-dimensional system is obtained,
in which the initial condition on the total enzyme concentration enters explicitly into system equations as an
additional parameter.

For fixed xE;0, the slow invariant manifold of the two-dimensional system so obtained becomes a one-
dimensional invariant manifold W1ðxE;0Þ, which corresponds to the intersection of W2 with the conservation
law for the total enzyme Eq. (A.2). Indeed, W2 can be viewed as a foliated manifold W2 ¼

S
xE;0

W1ðxE;0Þ,
formed by the uncountable family of these one-dimensional manifolds parametrized with respect to xE;0.

The result of the stretching rate analysis applied to Eq. (A.1) is depicted in Fig. A.2 (solid lines). While xs

and the second normal stretching rate xm;2 are always negative, the first, maximum normal stretching rate xm;1

is positive. This, apparently unexpected result, is a consequence of the fact that stretching rate analysis applied
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to the three-dimensional system Eq. (A.1) explores and finds the directions of maximum normal stretching in
the tangent subspace, which in principle may not satisfy the conservation law imposed on the enzyme concen-
tration. Therefore, stretching analysis yields N loc ¼ 2, which correctly reflects the fact that slow invariant man-
ifold of the three-dimensional system is a two-dimensional structure foliated by one-dimensional slow
manifold depending on the initial conditions.

The existence of a direction of positive normal stretching can be further ascertained by means of a simple
numerical experiment. Starting from the solution of Eq. (A.1) for xSð0Þ ¼ 1; xE ¼ xE;0 ¼ 0:01, we pick a point
along system the orbit, say x�S ¼ 0:8205; x�E ¼ 7:088� 10�3; xES ¼ 2:912� 10�3, and at this point the direction
associated with the positive normal stretching rate n̂� ¼ ðn̂�1; n̂�2; n̂�3Þ

T is evaluated, finding n̂�1 ¼ 6:986�
10�4; n̂�2 ¼ 8:323� 10�1; n̂�3 ¼ 5:543� 10�1. Considering two nearby initial conditions x1ð0Þ ¼ x� and
x2 ¼ x� þ en̂�, where e is a small parameter, it is possible to evaluate the evolution of a small initial perturba-
tion oriented along the direction of local normal positive stretching rate. The normalized distance
kx1ðtÞ � x2ðtÞk=e vs t is depicted in Fig. A.3 for e ¼ 10�3. As can be observed, for short/intermediate times,
this distance grows as a function of time, indicating that the occurrence of a positive local stretching rate is
a manifestation of a local, albeit not invariant, normal instability.

To complete the analysis, it is useful to perform another simple numerical experiment. Instead of perform-
ing the normal stretching analysis of Eq. (A.1), a direction normal to the vector field fðxÞ and to the stoichi-
ometric manifold xE þ xES ¼ xE;0 is selected, say n̂1 ¼ ð0; 1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p
ÞT, and the normal stretching rate bxm;1

associated with this direction evaluated. Subsequently, a second normal direction n̂2 can be uniquely defined
(modulo ±1, which is immaterial in the estimate of stretching rates), which is tangent to W2 and normal to
both fðxÞ and n̂2. In this way bxm;2ðxÞ can be estimated, and bxm;2ðxÞ represents the maximum stretching rate
normal to fðxÞ, and lying in the tangent space to W2 at x.

The behavior of bxm;1 and bxm;2 is depicted in Fig. A.2 (dashed lines). In this case, bxm;1 is identically vanishing.
This stems from the observation that a stoichiometric manifold is defined by a linear equation
Fig. A
kx1ð0Þ
b � x� C ¼
Xn

h¼1

bhxh � C ¼ 0 ðA:3Þ
where C is a constant and b ¼ ðb1; . . . ; bnÞ a vector possessing constant entries. If the dynamical system is
n-dimensional, the stoichiometric manifold is a ðn� 1Þ-dimensional hyperplane. Along system orbits, from
Eq. (A.3) follows b � fðxÞ ¼ 0. By differentiating the latter equation with respect to x, one obtains
b � JðxÞ ¼ 0 ðA:4Þ

The constant vector b, defining the stoichiometric manifold can be viewed as a vector normal to this linear
manifold. Consequently, Eq. (A.4) implies that the normal stretching rate which is normal to the stoichiom-
etric linear manifold is identically vanishing. This result can be straightforwardly extended to ðn� mÞ-dimen-
sional stoichiometric manifolds, expressed by a system of m linear constraints, bh � x� Ch ¼ 0; h ¼ 1; . . . ;m.

On the contrary, the second normal stretching rate bxm;2 is uniformly negative. Since n̂� 2 TW2jx� , the
stretching rate bxm;2 corresponds to the normal stretching rate associated with the two-dimensional dynamical
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system obtained from Eq. (A.1) when the stoichiometric constraint is explicitly accounted for, and the system
dynamics is expressed exclusively as a function of xS and xES (or equivalently of xE).

To sum up, stretching rate analysis applied to chemical reacting systems displaying conservation laws,
reproduces correctly the properties of the lower-dimensional slow manifold, which in the case of the Michae-
lis–Menten system behaves as a two-dimensional structure W2. The occurrence of positive stretching rates is
due to the fact that stretching rate analysis explores and finds the direction of maximum normal stretching in
the tangent subspace, which in principle may not satisfy the conservation law represented by stoichiometric
constraints.
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