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Abstract

A new method for diagnostics and reduction of dynamical systems and chemical kinetic models is proposed. The
method makes use of the local structure of the normal stretching rates by projecting the dynamics onto the local directions
of maximal stretching. The approach is computationally very simple as it implies the spectral analysis of a symmetric
matrix. Notwithstanding its simplicity, stretching-based analysis derives from a geometric basis grounded on the pointwise
applications of concepts of normal hyperbolicity theory. As a byproduct, a simple reduction method is derived, equivalent
to a “local embedding algorithm”, which is based on the local projection of the dynamics onto the “most unstable and/or
slow modes™ compared to the time scale dictated by the local tangential dynamics. This method provides excellent results
in the analysis and reduction of dynamical systems displaying relaxation towards an equilibrium point, limit cycles and
chaotic attractors. Several numerical examples deriving from typical models of reaction/diffusion kinetics exhibiting com-
plex dynamics are thoroughly addressed. The application to typical combustion models is also analyzed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many chemical, biochemical and biological processes involve a large number of species and reactions [1,2],
and the resulting kinetic schemes, either under perfectly mixed condition or, a fortiori when spatial inhomo-
geneities (diffusion and/or convection) are accounted for, are expressed by means of high-dimensional dynam-
ical systems. The occurrence of a large number of different time scales, and the resulting stiffness of the model
equations are common features of all these models.
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In order to highlight the role and the influence of the different kinetic steps (model diagnostics), simplify the
model equations, and possibly obtain a reduced model, different theoretical and computational approaches
have been proposed, such as the Intrinsic Low-Dimensional Manifold (ILDM) method [3-5], Computational
Singular Perturbation (CSP) [6,7], the Method of Invariant Manifold (MIM) [8,9], the method by Fraser and
Roussel [10,11], methods based on Lyapunov functions such as the thermodynamic free energy [12,13], meth-
ods based on the intrinsic dynamics in the tangent/cotangent bundle [14], the Zero Time Derivative method
[15], a combination of the Fraser and Roussel method with CSP [16]. For a review and a comparison of several
of these approaches see [17,18].

The common denominator of all these computational strategies is a simple and evocative paradigm: the
occurrence within the phase space of a Slow Invariant Manifold (SIM) for system dynamics, attracting nearby
orbits, possessing a lower dimensionality than the phase space, and representing the backbone around which
orbit dynamics is organized.

In the case of infinite-dimensional systems, such as reaction—diffusion models [19] expressed by means of a
system of partial differential equations, the transposition of ILDM and CSP approaches have been proposed
by Hadjinicolau and Goussis [20], Singh et al. [21], Goussis et al. [22], via the concept of an infinite-dimen-
sional slow manifold obtained by projecting the dynamics onto the local slow modes associated with the kinet-
ics. These approaches have been developed aside from the inertial manifold theory, proposed by Temam et al.
[23,24] that provides functional-theoretical criteria and computational methods [25-28] to obtain a finite-
dimensional representation of reaction—diffusion dynamics within an absorbing invariant set.

Motivated by the case study of singularly perturbed systems [29-31], considered as a benchmarking proto-
type, the recent literature on model simplification and reduction has been characterized by a superposition of
tools and methods deriving from geometric concepts (essentially expressing manifold invariance), perturbation
theory and computational strategies. CSP by Lam and Goussis [6,7], and the approach proposed in [16,32]
provide examples of the superposition of paradigms.

Although the connection between singularly perturbed system and computational methods for model
reduction in generic models is strong and motivated, it is important to observe that the formulation of reduc-
tion strategies for generic dynamical systems of physical interest is in general divorced from a perturbative
analysis, and that singularly perturbed systems represent solely a nonexhaustive class of dynamical models
which can be tackled and simplified by means of model reduction methods.

The intermingling of concepts deriving from singular perturbation theory, differential geometry and numer-
ical analysis has provided a wealth of different computational strategies to tackle model simplification of com-
plex kinetics schemes. On the other hand, some controversial issues have been raised on the definition of slow
manifolds and their properties. The reason for this may be attributed to different reasons: (i) the conditions
imposed by different authors on slow manifolds may have different nature (e.g. by imposing some smoothness
and analyticity criteria on the local representation of the manifold itself that by other authors are neglected
[33-35)); (i1) any geometrical definition of the slow manifold should be grounded on global properties defined
throughout the entire phase space, including the behavior at infinity [36], while this may not be the case in
perturbation studies; (iii) in practical applications to model reduction of complex kinetic schemes, “intrinsic
low-dimensional manifolds” may lack some basic properties (such as invariance [37], see e.g. [38]), and this
limitation “collides’” with more formal mathematical definitions of slow invariant manifolds [39]. Correspond-
ingly, the very basic concept of “slow/fast decomposition” of complex reaction schemes may involve some
intrinsic degree of arbitrariness since it relies on the specific method adopted in model diagnostics and reduc-
tion (such as ILDM [3], CSP [7], MIM [8)).

Apart from these fundamental issues on the definition of slow invariant manifolds, it is important to
observe that most of the computational strategies proposed for model simplification and reduction have been
developed and tested for chemically reacting systems evolving towards a stable equilibrium point. The ILDM
and CSP methods have been verified and benchmarked by considering chemical reacting systems and combus-
tion models relaxing towards equilibria as paradigmatic examples [4,40]. It is, therefore, not surprising that the
application of these model reduction techniques display problems and shortcomings when applied to dynam-
ical systems evolving towards more general limit sets such as limit cycles and chaotic attractors [14]. In point of
fact, the occurrence of persistent asymptotic oscillations defined on periodic/aperiodic/chaotic limit sets is a
common feature observed in many chemical and biochemical open systems (closed adiabatic chemical systems
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obeying the law of mass action, possess a unique stable equilibrium point). For a review, see the monographs
by Scott and Goldbeter [41,42], and references cited therein.

As far as reduction strategies are concerned, the occurrence of more complex limit attractors introduces an
extra degree of complexity to be taken into account. An efficient reduction algorithm for these dynamical sys-
tems should not only correctly describe the relaxation towards the limit set, but also the oscillating behavior on
the invariant limit set itself. Several geometrical approaches have been proposed for tackling this wider class of
dynamical systems, which are based on invariant vector dynamics within the tangent bundles [14,43,44]. All
these approaches are theoretically extremely interesting, since they address invariant geometric features of
dynamical systems on a fundamental level, but suffer the problem of being computationally onerous for
higher-dimensional dynamical systems, as they require the explicit estimate of vector dynamics along system
orbits. In the case one is interested in the reconstruction of the dynamics exclusively on invariant limit sets, a
wealth of different approaches have been provided. For a review, see e.g. [45] and references cited therein.

The aim of this article is to propose a simple and efficient model reduction and diagnostic method for gen-
eric dynamical systems regardless of their finite or infinite-dimensional nature, and of the geometry of their
limit sets. At the core of the method is a geometric characterization based on local normal stretching rates.
The numerics requires the spectral characterization of a symmetric matrix.

In spite of its conceptual simplicity, the stretching-based method for system diagnostics is based on a geo-
metric description of local tangent and normal dynamics. This geometric description finds its theoretical jus-
tification in the theory of normal hyperbolicity [39,46], viewed on a local level, i.e., pointwisely along system
orbits. To some extent, the stretching-based method shares some analogies with some recent modification of
ILDM [8,47]. However, there are some conceptual differences between the method proposed and these ILDM-
based strategies, as discussed in the remainder of the article (Section 3).

The stretching-based reduction method can be viewed as a local embedding technique stemming from the
stretching rate analysis of the system, obtained by locally projecting the dynamics onto the most unstable/slow
directions. The reduction method proposed is computationally simple and efficient as it exclusively involves
the solution of a lower-dimensional system of ordinary differential equations without nonlinear constraints,
the dimension of which coincides with the number of relevant normal directions that should be locally
accounted for.

The article is organized as follows. Section 2 reviews succinctly the basic notions of normal hyperbolicity
and the definition of local normal/tangential stretching rates. Several examples taken from prototypical kinetic
models highlight the meaning of the stretching-based analysis in the characterization of dynamic properties
along system orbits and invariant manifolds. Section 3 introduces the stretching-based approach to model
characterization in the general n-dimensional case and explores connections and differences with other existing
methods. In particular, we show how to compute the normal stretching rate spectrum (and the corresponding
set of directions of maximum normal stretching restricted to the normal subspace) and how it can be used for
performing a local classification of the slow and fast (or unstable/stable) modes of the dynamics. Section 4
addresses the stretching-based method via some paradigmatic examples, by considering both low-dimensional
models and nonlinear reaction—diffusion kinetics originating periodic and chaotic oscillations. The role of con-
servation laws in chemical kinetics is addressed in an Appendix, by considering the Michaelis—Menten enzy-
matic reaction as a prototypical model. Section 5 develops the stretching-based reduction method, and
discusses several empirical criteria for defining the number of relevant normal modes. Apart from low-dimen-
sional prototypical systems exhibiting chaotic behavior, the examples of application of the stretching-based
reduction strategy concern infinite-dimensional reaction—diffusion systems and premixed flames.

2. Normal hyperbolicity and stretching rates

The theory of invariant manifolds of dynamical systems is grounded on the concept of normal hyperbolicity
[39]. Essentially, given a map (diffeomorphism) ¢ of a manifold .# onto itself, ¢ : .# — .4, a smooth subman-
ifold 77, invariant under ¢ (i.e. such that ¢(7") C #") is normally hyperbolic if the tangent bundle 7./, of .#
restricted to ¥~ can be decomposed into three continuous sub-bundles:

THM\, =N"STV &N (1)
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where 77" is the tangent bundle of #~, and 4™ & A" corresponds to a splitting of the normal bundle to #~
into an unstable and a stable sub-bundle. The two normal sub-bundles 4™ and 4™ are such that the vector
dynamics generated by ¢, i.e. the linear map D¢ : T.# — T.# of the tangent bundle onto itself defined by the
differential' D¢ of ¢ is such that:

(1) D¢ expands vectors of 4™ more sharply than vectors of 77",
(2) D¢ contracts vectors of 4™ more sharply than vectors of 77"

This definition of normal hyperbolicity is of global nature, i.e. it refers to the evolution of vectors in the sub-
bundles 4™, 7", /*. A local definition of normal hyperbolicity based on local rates of expansion and con-
traction, specifically suited for local diagnostics and model reduction, is given in the remainder of the article
(see Eq. (26) and related discussion).

In general terms, therefore, the concept of normal hyperbolicity of a manifold indicates that the strength of
the flow along the manifold is weaker than the attraction/repulsion to/from it [46]. Under the condition of nor-
mal hyperbolicity, a wealth of results can be established on the existence and persistence of invariant manifolds
of dynamical systems, such as the Hadamard—Perron theorem regarding the existence of stable and unstable
manifolds [39], and the Fenichel’s results related to the persistence of invariant manifolds under perturbations
[31]. The latter theorem is invoked in the singular perturbation theory of dynamical systems to confer a firm
mathematical setting to perturbation methods and computational approaches aimed at decoupling slow and fast
components of the dynamics, and at obtaining numerical approximations of slow invariant manifolds [37].

By focusing on dynamical systems possessing linearly stable (i.e. exponentially attracting [48]) slow invari-
ant manifolds #, the splitting of the tangent bundle expressed by Eq. (1) at any point x € # simplifies, since
the unstable sub-bundle 4™ is absent and 7.#|, can be decomposed as follows:

T\, =TW &N 2)

where vectors belonging to ./ are contracted by the action of the differential D¢ more sharply than vectors
belonging to the tangent sub-bundle 7% of # . In the case of exponentially attracting manifolds, the require-
ment associated with the notion of normal hyperbolicity dictates that whatever the dynamics within the invari-
ant manifold # is, normal vectors to #~ experience a more intense contraction (measured by their norms)
than tangent vectors belonging to 7% . The latter property is also the most intuitive dynamic requirement
for an exponentially attracting invariant manifold in order to be regarded as a “slow manifold”.

The fact that an invariant exponentially attracting manifold should possess some form of normal hyperb-
olicity in order to be regarded as a “‘slow manifold” (in the intuitive and physically motivated meaning of this
wording) is further addressed in this Section. A clear example of the importance of this property stems from
the analysis of linear systems dx/d¢ = Ax, where x € R”, and the constant coefficient matrix A possesses dis-
tinct real and negative eigenvalues. For this class of systems, given any point x, € R”, the global orbit O(xy)
emanating from Xy, i.e. the union of forward and backward orbits originating from x,, is an invariant and
exponentially attracting one-dimensional manifold. However, solely the linear eigenmanifold passing through
the origin 0 and spanned by the slowest eigenvector possesses the property that normal perturbations to it
decay faster than tangential perturbations, thus motivating the claim that this manifold is the slow invariant
one-dimensional manifold of the system?.

The concept of normal hyperbolicity can be formulated in a way convenient to develop methods for model
reduction alternative to the existing ones, and explicitly accounting for the dynamic properties of normal/tan-
gential vectors. To this purpose, it is convenient to introduce the concept of tangential and normal stretching
rates, in order to reformulate the analysis on a local basis.

First, let us consider the case of two-dimensional dynamical systems (the extension to higher-dimensional
dynamics is developed in the next section).

! By choosing a coordinate system of .#,x = (x1,...,x,), and letting v € T.#, the action of the differential D¢ onto v, is represented by
the linear system D¢v = Av, where A = 0¢(x)/0x is the Jacobian matrix of ¢.

2 Analogously, the m-dimensional eigenmanifold, passing through the origin and spanned by the first m smallest eigenvalues, is actually
a slow invariant manifold such that normal perturbations to it decay faster than tangential ones.
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Let

dx
=) (3)

be a two-dimensional dynamical system defined in R*, and let us further suppose that the system possesses a
one-dimensional invariant slow-manifold %" associated with the unique stable equilibrium point x* = 0, so
that f(x*) = £(0) = 0. Vector dynamics in the tangent bundle is described by the equation
dv
dr
where J(x) = 0f(x)/0x is the Jacobian matrix of the vector field f(x) and v is a vector of the tangent bundle. By
taking the scalar product of the left- and right-hand side of Eq. (4) with v, it follows that

S =2 =2 ()

= J(x)v (4)

where |v| indicates the norm of v, and (v, w) the scalar product between the two vectors v and w. Eq. (5) implies
that the stretching rate experienced by the generic vector v at point x is given by

(J(X)v,v) o -

— 25— = {JX)W,V) (6)

o(x,v) = |2

v
or equivalently as o(x,v)= (J(x)¥,v), where v=v/|v| is the unit vector associated with v,
J¥(x) = (J(x) +J"(x))/2 is the symmetric part of J(x), where J" is the transpose of J.
Let us now consider the dynamics of tangent and normal vectors to the invariant manifold® %, which in
the present case is one-dimensional. The tangential and normal stretching rates w,(x) and w,(x) at any point
X € W are given by

w.(x) = (J(xF, ) (7)
o,(x) = (J(x)i, h) (8)

where f = f/|f|,i = n/|n|, and n = (3, — /1), /1 and /> being the two entries of the vector field f. Note that Eq.
(7) stems from the fact that ¥ is invariant for the dynamical system Eq. (3), and correspondingly the tangent
space at x € " is spanned by the vector field f(x) itself.

The tangential and normal stretching rates provide a local (pointwise) way to characterize stretching
dynamics and, as a byproduct, the dynamics within invariant manifolds. Let 7, (f) and v, (¢) be the vectors
evolved at time ¢ starting from (0) € T'#"y, and v(0) € Ny, respectively, and let IT), be the normal projector
at a point x, which maps any vector into its orthogonal component to 7%". It follows from Eq. (5) after some
algebra® that

3 Henceforth, given an invariant manifold %, the normal sub-bundle, i.e. the orthogonal complement to its tangent sub-bundle 7%, is
indicated with the symbol N#". Therefore, T# 'y and Ny are the tangent and the normal subspaces at the point x € %", respectively.

4 Eq. (10) describing the dynamics of normal components can be simply derived as follows. Consider the dynamics of a generic vector v,
starting from a generic initial vector v, possessing nonvanishing components both in the central (spanned by f) and in the normal
subspaces. For any time ¢ > 0, let v(t) = ¢, (z)vo, where ¢, is the phase flow and ¢; (z) = 0¢,(z)/0z. The vector v(f) can be expressed as
v =af +n, where f = f(¢,(2)) is the vector field, a is a scalar depending on time and n(r) = IT}, ) [v(#)], is the normal component of v. By
definition, both v and f satisfy the equation for vector dynamics dv/ds = Jv and df /ds = Jf. By differentiating the expression for v with
respect to time and substituting into it the expressions for the time derivatives of v and f, it follows that dn/d¢ = Jn — fda/dz. The latter
equation implies that the normal sub-bundle is not invariant because of the presence of the the extra term fda/dr that appears aligned in
the tangential direction. In order to get rid of this term, one can take the scalar product with respect to n, so that
(dn/dt,n) = (Jn,n) — da/dt(f,n). By considering that, by definition, (f,n) = 0, the latter expression implies that

d'ﬂ 2(Jn,@)nf* = |n(2)| = [n(0)| exp ( /0 w‘,(z(t’))dt’)

where o, = (Ja,n) and i = n/|n|. A similar procedure can be followed for deriving Eq. (9).
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Vxn (t) \I—I\;:(t)

7(0)

Fig. 1. Schematic evolution of normal and tangential vectors along an invariant one-dimensional manifold #. ¢, is the phase flow,
x(1) = ¢,(xo) associated with Eq. (3).

e ()] = [2(0)] exp [ / tw&x(r’))dr’} )
T, g (0] = [v(0)] exp [ / tw«x(r’))dr’] (10)

where x(¢) is the solution of the Cauchy problem associated with Eq. (3) and with the initial condition
x(t = 0) = xo. The geometrical meaning of Egs. (9), (10) is depicted in Fig. 1. Observe that the normal pro-
jector I, is used in Eq. (10). This is essential because the normal sub-bundle is not invariant and, therefore,
the evolution of any normal vector introduces a component belonging to the tangent sub-bundle.

Tangential and normal stretching rates, estimated along an invariant manifold #~, provide a pointwise
characterization of the dynamics of tangential and normal perturbations to the manifold # . From this obser-
vation it follows that a local characterization of normal hyperbolicity and the identification of the slow and
fast (and more generally of the unstable and stable) components of the dynamics on an invariant manifold can
be obtained by considering the behavior of normal and tangential stretching rates and their relative strength.

It is convenient to exemplify this observation via a numerical example. Consider the Semenov model for
thermal explosions [49,50], which represents the evolution of a first-order exothermic reaction in a perfectly
stirred batch system in the presence of heat exchange with the surrounding. In dimensionless form, the heat
and mass balance equations read [38]

dx |
s = 0g(x) —x0), = —yq(¥) (1)

where x and y are the dimensionless temperature and reactant concentration, respectively, and
q(x) = exp(x/(1 4+ px)). The parameter f is the reciprocal of the Zeldovich number, i.e. of the dimensionless
activation energy, normalized with respect to the coolant temperature. We fix> 6 = 1, f = 0.31, and let the
parameter ¢ vary. This system has been thoroughly analyzed elsewhere [36] in terms of the structure of the
invariant slow manifolds, the bifurcations occurring by changing the parameter values and the way these
bifurcations affect slow manifold properties. For ¢ < 1, the system possesses a unique global slow manifold®
W',. Figs. 2(a) and (b) (bold lines) show the portion of the global slow manifold near the point x* for two val-
ues of ¢ = 107>, 1072

Since the relative strength of normal to tangent perturbations is significant to qualify the properties of a
slow manifold, the stretching ratio r(x):

r(x) = ©,(X)
@-(X)

. XEW, (12)

provides a lumped local indicator of the normal-to-tangential stretching.’

> The choice of the values for the parameter & and f is indeed immaterial in the present analysis. Any other choice for these parameter
values would produce qualitatively similar results.

® The global slow manifold is the heteroclinic connection between the equilibrium point x* = 0 = (0,0) and a saddle point at infinity
[51]. The saddle-point at infinity can be easily obtained by compactifying the system, i.e. by considering the Poincaré projection of Eq. (11)
on the sphere-at-infinity [52].

7 At almost all the points x the stretching ratio is a bounded function of the position. However, there are points at which #(x) diverges.
The numerator w,(x) cannot diverge to infinity if the Jacobian is bounded. However, the denominator w.(x) can be equal to zero at any
point at which the time derivative of the modulus of the vector field along the trajectory passing through it vanishes. This means that the
acceleration df /dz is orthogonal to the velocity f.
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Fig. 2. Phase portrait of the Semenov explosion model for § =0.31: (a) ¢ = 10>, (b) ¢ = 1072, Marked line (a) indicates the global slow
manifold of the equilibrium x*.

1(x)

X

Fig. 3. Stretching ratio r(x) vs x along the global slow manifold of the Semenov model ff = 0.31: (a) ¢ = 107>, (b) ¢ = 1072

The behavior of #(x) as a function of the x-coordinate along the global slow manifold #7 is depicted in
Fig. 3.

For ¢ = 10 (curve a in Fig. 3), the stretching ratio is strictly and uniformly greater than 1. This indicates
that, throughout the whole manifold #7, normal vectors are contracted more sharply than tangential ones.
This phenomenon corresponds to a locally normally hyperbolic slow manifold, i.e. of a “well-behaved” slow
invariant manifold attracting nearby orbits, as can be observed from the phase-space plot depicted in Fig. 2(a).
On the contrary, for ¢ = 102 (Fig. 3, curve b) there exists a portion of the slow manifold (referred to as the
inverting zone), in the range x € (0.52,5.22), for which r(x) < 1. In this interval, the contraction of normal per-
turbations is weaker than the tangential dynamics, and this affects orbit dynamics, as illustrated in the phase-
space plot depicted in Fig. 2(b): system orbits travel close but almost parallel to the slow manifold in the
inverting region.

In the perspective of model reduction, the dynamics in the neighborhood of the inverting region can hardly
be viewed as purely one-dimensional and “localized” on ¥, because the evolution of normal perturbations is
no longer faster than tangential evolution. Hence local normal hyperbolicity of #7;, viewed as a one-dimen-
sional and invariant manifold, is lost. This observation can be generalized to higher-dimensional systems,
which are the subject of the remainder of this article. In all the cases in which a local inversion at a point
x along a manifold #", occurs in the behavior of normal-to-tangential stretching rates, a local slow manifold
W 10e(X) at x can be defined by augmenting the dimensionality of #7 in order to accommodate, within the
now-augmented tangent bundle of #",.(x), the slower or more unstable directions. This operation can be
viewed as a linear embedding of #7 into # j,.(x) at x.

This two-dimensional example indicates that it is possible, and indeed convenient, to develop a stretching-
based approach aimed at: (i) quantifying, on a local basis, the properties of slow manifolds, (ii) identifying,
from a stretching-based viewpoint, the slow and fast (unstable/stable) components of the dynamics, (iii) devel-
oping simple and computationally efficient methods for model analysis and reduction grounded on the relative
strength of normal to tangential stretching rates.
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3. The stretching-based approach

In order to develop a stretching-based description of slow and fast components of a dynamic evolution
aimed at identifying approximate slow manifolds, it is necessary to generalize the concept of normal stretching
rates and their estimate for dynamical systems defined on a n-dimensional phase-space with n > 2. The next
subsection addresses this issue, and subsequently the stretching-based approach to model reduction is
introduced.

3.1. The n-dimensional case

This Section generalizes the characterization of normal hyperbolicity for manifolds defined in n-dimen-
sional phase spaces with n > 2. Let us first consider a one-dimensional manifold #" (e.g. an orbit) of an
n-dimensional dynamical system. While the tangential stretching rate can be estimated according to Eq. (7),
the definition of normal stretching rates requires some more algebra and further additional observations.
A way of defining w,(x) is the following:

(X)) = max (J(x)n,n 13
0,00 = max (IR (13)
where the maximum is taken over all the normal unit vectors belonging to the normal space N#7 at x.

The estimate of w, and the consequent introduction of a spectrum of normal stretching rates can be per-

formed as follows. Let x € #” and f(x) be the vector field at the point. The first step is to obtain a basis

for N#'x. Let & be the index corresponding to the maximum entry of f(x) = (f},...,f,) in absolute value:

hix)| =max = [fi(x)|[<aX)], k#h (14)
Let e, = (1,0,...,0),e; = (0,1,...,0), etc. be the unit vectors oriented towards the coordinate axes of the
phase space. If 4 # 1 choose

B ={f(x),e1,e,...,€ 1, €1,...,€} (15)
otherwise take

B = {f(x),es,e3,...,€,_1,€,} (16)

It is straightforward to see that the system of vectors defined by Eqgs. (15) or (16) is by construction linearly
independent, and consequently it forms a basis for the tangent space TR" at x. The vector basis B can be made
orthonormal by using e.g. the classical Gram-Schmidt procedure to obtain a new (orthonormal) basis
= {&},_,, where & = f. As a byproduct, the system of vectors é,,...,é, spans the normal subspace
N #’x, and can be used as a orthonormal basis for the normal subspace.
By expressing the Jacobian matrix with respect to the new basis B, the new matrix representation for J
reads as

J=T T =TT (17)

where T is the matrix associated with the change of basis, i.e. such that B = IT where I is the identity matrix.
Due to the orthonormality of B the matrix T is a unitary matrix, i.e. such that T' =T', where T" is the
transpose of T. Componentwise, the matrix J reads

=71,1 jI.Z j],B """ JAl,n

j‘z,l j2,2 j1,3 """ j?,n

(Y
Il
Il

(18)

jnt jnn
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As a visual aid, the matrix J in Eq. (18) is partitioned into four blocks. By definition, since &, = f, any vector
n € N/ s admits a vanishing first entry 727 = 0 so that the normal stretching rate associated with any n is given by

O)(X,fl) = Z Zjhkﬂhhk (19)
h=2 k=2

and, therefore, solely the block J™ in Eq. (18) matters in defining normal stretching rates. Consequently, the
maximum normal stretching rate corresponds to the maximum of the quadratic form Eq. (19) subjected to the
constraint

n

> =1 (20)

h=2

This extremal problem, with the constraint expressed by Eq. (20), corresponds to the extremum of the qua-
dratic objective function

Qiy. i 1) =Y Y Ty — 2| > iy — 1 (21)
h—2 k=2 h=2
where /4 is a Lagrange multiplier. This extremal problem leads to the system of equations

Q n
a—:0, h=2...n = Y
k=2

ony,

t/jh‘k + jk.,h

5 i = dy, h=2,....n (22)

Therefore, the estimate of w, reduces ultimately to an eigenvalue/eigenvector problem for the (n — 1) x (n — 1)
symmetric matrix J*, the entries of which are

~ J ikt J kh

Syorpr = — 3 s o hk=2,....n (23)
Since J* is symmetric, it possesses real eigenvalues u;, that can be ordered in a nonincreasing way, i.c.
U = Wy = -+ = u, ;. The associated unit eigenvectors o1, ...,q,_; are mutually orthonormal (if the eigen-

values are distinct), and form a basis for N . Moreover each eigenvector g, generates a one-dimensional
subspace N#'x;, C N#'x so that the (n — 1)-dimensional normal subspace can be generated as the direct
sum of each, i.e. N#'y = ®ZINW .

The spectrum of eigenvalues of J¢ coincides with the pointwise normal stretching rate spectrum

2,(x) = {ou ()5 = {mhis (24)
The value of w,(x) defined by Eq. (13), therefore, is the largest eigenvalue of j“',
(%) = 01 (%) = gy (25)

and the corresponding direction of maximum normal stretching is spanned by 61 € N#’x . The second eigen-
vector 6, € Ny, is associated with the maximum normal stretching rate w,»(X) = w, within &/ N¥ g, i.e.
within the orthogonal complement to 7% x & N# ;. Analogously, the generic normal stretching rate w, ,(x),
with ¢ < n — 1, is the maximum over the normal subspace @Z;éN Wsh.

It should be observed that recent ILDM-based approaches have introduced symmetrized versions of the
Jacobian matrix in order to simplify the computation of approximate invariant manifolds [8,47]. Gorban
and Karlin [8] suggest the use of the symmetrized Jacobian J¥™ = (J 4 J")/2, and propose a Symmetrized
Entropic ILDM (SEILDM), in which the local Jacobian matrix is substituted by the symmetrized form
J¥™ = (J+H_'J"H,)/2, where H, is the Hessian matrix of a Lyapunov function near the equilibrium. This
approach applies solely near a stable equilibrium point x,, f(x,) = 0. Bykov et al. [47] propose the TILDM
method, in which the ILDM-basis vectors are replaced by the eigenvectors® of the symmetric matrix M = J7J.

8 1t should be observed that the eigenvalues of the symmetric matrix M are the singular values of J; by construction, they are all real and
positive, this latter property preventing us to extract any information about the local stability properties of the system.
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There are, however, some important differences between Eq. (23) and these approaches. The main difference
is that Eq. (23) derives from a geometric principle: consider the normal perturbations to the driving direction
f(x) at x, and obtain in the normal subspace the directions of maximum normal stretching. Observe that these
directions are not the directions of maximum stretching for J (which correspond to the eigenvectors of
(J+J7)/2), but the directions of maximum normal stretching restricted to the normal subspace. This is
the reason why the symmetrization is not performed over the whole Jacobian matrix but solely on a portion
of it, after a suitable change of basis. This geometric perspective is not present in the other symmetrization
approaches, in which the focus is mainly algebraic (to get rid of complex conjugate eigenvalues/eigenvectors
of the Jacobian), while it represents the core of the current analysis (see further Section 5 and the development
of a stretching-based reduction strategy).

The extension to higher-dimensional manifolds is straightforward, and follows the same approach devel-
oped above. Let #” be a m-dimensional (m > 1) manifold, invariant for the dynamical system Eq. (3), embed-
ded in an n-dimensional phase space. Let t;(x),...,t,(x) be an orthonormal system of vectors spanning the
tangent space of 7 at the point x € #". This tangent basis can be completed with a system of n — m ortho-
normal vectors ey,...,e,_, belonging to the orthogonal complement N #.

Therefore, B = {t(x),...,t,(x),ei,...,e, ,} is an orthonormal basis for TR". By projecting the dynamical
system on this local basis, the transformed Jacobian matrix J can be partitioned into the four blocks
J, 37, J" and J™ (see Eq. (18)) and the the normal stretching rates can be obtained by considering the qua-
dratic form associated with the (n — m) x (n — m) matrix J".

The latter generalization allows us to define the concept of local normal hyperbolicity and how it relates to
the theory of normal hyperbolicity introduced at the beginning of Section 2. The concept of normal hyperb-
olicity can be formulated at a local level, by introducing the following definition. An m-dimensional manifold
", invariant and exponentially attracting for the n-dimensional dynamical system Eq. (3) (with n > m) is
locally normally hyperbolic at x € #/, if there is a T > 0 such that the linear map D¢, associated with the
phase flow ¢, for # = 7 generated by the vector field f(x) contracts vectors of .#” more sharply than vectors
of T . The time t depends in general on x. If this property holds for any x € #”, then the manifold #" is
uniformly locally normal hyperbolic. Since, this definition holds locally, it can be formulated in terms of
stretching rates.

Specifically, let #~ be an m-dimensional manifold passing through x, let w.;(X),..., ®,»(X) be the maxi-
mum tangential stretching rates experienced by vectors belonging to 7%’ and w,(X),. .., ®,,_»(x) the cor-
responding maximum normal stretching rates obtained as discussed above. Both w.;(x),...,®.,(x), and
Wy 1(X),...,o,,-n(x) are ordered in a nonincreasing way. The general criterion of local normal hyperbolicity
implies that

O m(X) > 0, 1(X) (26)

i.e. that at least the smallest tangential rate is greater than the largest normal rate. If w,;(x) < 0 this implies
locally, i.e. in a neighborhood of x, that normal perturbations decay faster than tangential ones.

On the other hand, the theory of normal hyperbolicity implies the splitting of the tangent space expressed
by Egs. (1) or (2), which is to be interpreted as a global, not local, decomposition. By considering the case of
linearly stable manifolds, such that Eq. (2) applies, normal hyperbolicity implies a condition on the global evo-
lution of normal and tangent vectors to #". For any normal vector v(0) € N#', its evolution vy, (¢) at time ¢,

Vxo (1) = Vxo (1) 4 vx,2(0) (27)
where vy, (1) € NW x(), Vxy () € TW 'y is such that
Vg (O] = [Ty [vs, (0] < Cre™[v(0)] (28)

where C,, 4, > 0. At the same time, the evolution of any tangent vector t(0) € T#', satisfies the inequality
|73 (1)] < Cee™'[2(0)] (29)

where C, > 0, and /, can be either positive or negative. In any case for generic normal and tangential vectors
normal hyperbolicity implies that

Jo > =1 (30)
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which essentially means that normal vectors contract more “‘sharply” than vectors belonging to the tangent
sub-bundle to #". We observe, however, that the constants C, and C, entering Egs. (28), (29) may attain val-
ues greater than 1. This could imply, solely on a local level, that normal vectors may grow, i.e. normal vector
dynamics may be unstable (or slower than tangential dynamics), albeit linear stability and normal hyperbo-
licity of the manifold being guaranteed.

Clearly, local normal hyperbolicity implies a much weaker statement on the evolution of normal and tan-
gential perturbations to #~, namely the fact that normal vectors locally experience stretching rates that are
smaller than the stretching rates characterizing tangent vectors to #".

3.2. Normal stretching spectrum and model reduction

The analysis of the normal stretching rates can be used for model diagnostics and reduction of complex
systems. In order to address this issue, consider a dynamical system Eq. (3) defined in R" and a generic point
x of the phase space. At the point x one may consider the orbit passing through the point, and define the tan-
gential stretching rate w,(x) and the normal stretching spectrum X, (x) = {w,(X),...,®,,_1(x)} ordered in a
nondecreasing way and defined in Section 3.1. From the relative strength of the elements of X,(x) compared to
the tangential rate w.(x), simple criteria for model decomposition can be inferred by exploiting the concept of
local normal hyperbolicity.

Indeed, the tangential stretching rates yield the actual characteristic time scale #.(x) = 1/w.(x), the local
driving time scale that should be compared with the time scales associated with the evolution of normal per-
turbations, represented by the normal spectrum X, (x).

Suppose that w.(x) < 0 and that w,(x) < w,(x). This implies that all the normal perturbations decay fas-
ter than the driving time-scale .(x) associated with the vector field. Consequently, the orbit passing through
the point x can be viewed locally (i.e. in a neighborhood of the point x itself) as a one-dimensional invariant
normally hyperbolic manifold for the dynamical system Eq. (3).

On the contrary, let us suppose that the first m > 0 normal stretching rates are greater than w,. This means
that the normal perturbations in the directions spanned by the corresponding eigenvectors are either locally
unstable (if the corresponding stretching rates are positive) or locally slower (for w,; < 0) than the character-
istic time-scale associated with the decay of the intensity of the vector field, and expressed by the reciprocal of
the tangential stretching rate. This implies that the one-dimensional invariant manifold passing through x
ceases to be locally normally hyperbolic.

In the latter case, we can define in the neighborhood of x a (m + 1)-dimensional embedding manifold
W 10c(x) Which indeed is locally normally hyperbolic, by constructing its tangent space by means of the vector
f, parallel to the vector field, and the vectors sy,...,s,, where

Sh:TO'}” h:l,...,m (31)

are the eigenvectors associated with the first m directions of maximum normal stretching expressed in the
canonical basis ej,...,e, and T is the matrix associated with the change of basis, Eq. (17).

In other words, the tangent subspace of #.(x) is spanned by the vector field itself and by the vectors asso-
ciated with those normal perturbations, the stretching rates of which are greater than w,(x).

The concept described above is the starting point for model diagnostics and reduction of complex dynam-
ical systems, since it performs locally a classification of the slow and fast (unstable/stable) modes of the
dynamics. The main issue in this classification is that the concept of slow and fast modes depends locally
on the central time-scale 7. i.e. on the local rate of tangential evolution along the orbits. Slow/unstable modes
correspond to normal perturbations along those directions possessing a normal stretching rate greater than ;.
Faster/more stable modes are those associated with normal rates smaller than .. Therefore, the tangential
stretching acts as a threshold by setting the pace of what is locally slow or fast. A byproduct of this approach
is the possibility of defining the dimension N..(x) of the local slow manifold #j,.(x), from the condition

Nie(X)=m+1, m:0,,(X) = 0.(X), @Opu1(X) < 0.(X) (32)

The criterion Eq. (32) for defining Ny, (x) should be commented further. Essentially, it means that the behav-
ior of the system near x can be approximated by means of a Ny,(x)-dimensional manifold #"..(x) which is
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Fig. 4. —w.,—w,;, and N, along a trajectory as a function of time for the reaction-diffusion system Eq. (33) for
¢> =10,K,, = 0.1n = 100. Curve (a) depicts —w,. Curves (b)—(e), indicated by the arrow, show the behavior of the first four —w,,
respectively. Curve (f) refers to the evolution of N.

locally normally hyperbolic. Such local approximation is intrinsically not invariant, since normal vectors asso-
ciated with the maximum normal stretching rates are not invariant for the vector dynamics expressed by Eq.
(4). The lack of invariance is the trade-off to be paid in order to develop a simple computational method for
model simplification and reduction. The criterion expressed by Eq. (32) proves to be a safe local criterion to
ascertain that in the neighborhood of x normal perturbations are “overwhelming” in comparison to the
dynamics of vectors tangent to # j,.(x). Moreover, a complete characterization of the normal perturbations
and of their influence on the dynamics can be achieved by examining the spectrum of normal stretching rates.
Particularly interesting is the stretching rate analysis for chemical kinetics in the presence of conservation laws
(induced by stoichiometric constraints). This case is thoroughly analyzed in Appendix A.

4. Numerical examples and stretching analysis

This Section addresses the stretching-based characterization of dynamical systems by considering several
prototypical models to illustrate it.

4.1. Reaction—diffusion in a porous catalyst

In order to illustrate the stretching-based analysis, consider a classical reaction—diffusion equation

¢’c
K,+c

dc = 0%c — , oy =1, dcl_=0 (33)
where 07c = 0"¢/0x", defined on x € (0,1). This equation corresponds to the spatially one-dimensional
approximation for a catalytic process within a porous solid catalyst, the reaction rate of which is expressed
by a Langmuir-Hinshelwood kinetics. In Eq. (33), ¢ is the square of the Thiele modulus, which is the ratio
between the characteristic diffusion time to that of reaction. Let ¢|,_, = 0, i.e. no reactant is initially present
within the pore. Stretching-based analysis has been performed on a discretization of Eq. (33) by adopting a
finite-difference scheme with n = 100 internal points.’ Fig. 4 summarizes the result of the stretching analysis

® We adopted a three-points finite-difference approximation of the Laplacian and a forward finite-difference approximation of the first-
order derivative entering the boundary condition at x = 0. The resulting set of n ODEs for the n time dependent variables {c; }}_; is the
following:

de /dt = (¢; — ¢1) /AP — *c1 /(K + €1)
dey/dt = (cay1 — 2¢i + 1) /AP — @i/ (K + i)y h=2,....n
where ¢,.; =1 and Ax = 1/(n+ 1). n = 100 internal points for the finite-difference discretization ensure a good resolution of the funda-

mental length scales of the systems, for all the time instants. The set of ODEs has been integrated by means a fourth-order Runge-Kutta
algorithm.
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for this system as it shows the behavior of —w. (curve a), —w,, (curves b—e) and Ny, (line f) along a generic
trajectory.

At short time scales, the initial reactant profile is discontinuous, since boundary and initial conditions do
not match continuously at x = 1, hence the driving time scales, controlled by the action of the Laplacian oper-
ator, are very small. Almost all the normal modes are slower than ¢., and Nj,. ~ n. As time increases, high
frequency modes relax, and N, monotonically decreases up to Ny, = 1 for large ¢. This phenomenon is
clearly depicted in Fig. 4, where the staircase-like profile for Ny, (curve f) corresponds to the progressive extin-
guishment of all the remaining normal modes up to ¢ = ¢, starting from which solely the dominant mode pre-
vails (N, = 1), and all the normal perturbations are extinguished. Each jump in the staircase-like profile for

Njo corresponds to the occurrence of the condition —w,, > —o, at the time instant #;,, h =n —1,..., 1, which
corresponds to the monotone relaxation of the system dynamics onto lower-dimensional slow manifolds of
dimension /4. Only the last four time instants #,, # = 1,...,4 are shown in Fig. 4.

4.2. Low-dimensional chaotic dynamical systems

Stretching analysis applies to generic dynamical systems, including those exhibiting complex persistent
oscillations such as chaotic models. To highlight this issue, consider the classical Lorenz system [53], which
is the prototype for low-dimensional chaos in smooth time-continuous dynamics [54]

5= o(y—x)
y=m—y—xz (34)
z=2xy— bz

where x = dx/d¢. Fig. 5(a) depicts the Lorenz attractor for ¢ = 10,7 = 28 and b = 8/3, while Fig. 5(b) depicts
the behavior of the tangential and normal stretching rates as a function of time ¢ along a trajectory starting
from a point on the Lorenz attractor. The Lorenz system has been integrated by means of a fourth-order
Runge-Kutta algorithm. As expected, the stretching rates oscillate following the chaotic nature of the limit
set. Specifically, it can be observed that for almost all the time instants the tangential stretching rate (depicted
with a bold line) is greater than the second normal stretching rate , ,, and this implies N, = 2 for almost all
the times. We also observe that the number N of positive stretching rates is always smaller than or equal to 2,
since w,, < 0 uniformly. The numbers N, and N will be used in the remainder of this article to develop
criteria for model reduction of oscillating/chaotic dynamics (see Section 5).
Starting from the local definition of normal and tangential stretching rates, it is possible to introduce global
quantities, obtained by averaging over time
t t
@10 =1 [ wa)dt, (a0 = [ ol xa)drs b=t (35)

The limit for £ — oo of these averages defines n real numbers that will be referred to as the pseudo-Lyapunov
tangential/normal exponents

aSO T b

@y, wv,h

-20 0 20

Fig. 5. (a) Projection of the Lorenz attractor for ¢ = 10,7 = 28 and b = 8/3 onto the x — z plane. (b) Evolution of the tangential (bold
line) and normal (dashed lines) stretching rates vs # on the Lorenz attractor.
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Fig. 6. Averaged tangential (bold line) and normal (dashed lines) stretching rates for the Lorenz system at ¢ = 10, = 28 and b = 8/3.

A, = llirglo<wf>(t)’ Ay = }Hglc<w‘h>(t) (36)
Such pseudo-Lyapunov spectrum is not an invariant property of dynamical systems, since the normal directions
of maximum stretching are not invariant. Therefore, it should not be confused with the Lyapunov spectrum
that is defined by Oseledec’s theorem [55] by means of the stretching/contracting behavior within invariant
sub-bundles. More precisely, the spectrum of Lyapunov exponent emerges from the representation of the tan-
gent bundle as the direct sum of invariant sub-bundles, and the Lyapunov exponents are the stretching expo-
nents associated with the vector evolution within each of these invariant sub-bundles. The application of these
concepts in model reduction is given in [14,56]. The stretching-based method makes no use of global invariant
properties within the tangle bundle, but rather analyzes the local tangential and normal stretching rates point-
wisely. This is the main difference of the SBR method, with respect to other methods such as NTDRB [14] or
the method by Mease and Topcu [56], the core of which is the determination of the invariant sub-bundles (or
filtrations), which represent the most suitable geometrical setting for expressing the timescale-properties of a
dynamical system. Consequently, the definition of the pseudo-Lyapunov exponents is conceptually different
from the spectrum of Lyapunov exponents. Solely qualitative connections between these two spectra can be
derived, as discussed below (see Egs. (37) and (38)).

Although the normal pseudo-Lyapunov quantities are not invariant exponents in the meaning of Oseledec’s
theorem, they may give useful information about global dynamics. Fig. 6 depicts the behavior of the averaged
tangential and normal stretching rates for the Lorenz system.

The values for the pseudo-Lyapunov exponents'® are: A, = 0,4, =0.986,4,, = —14.65. These values
should be compared with the true Lyapunov spectrum Ay, # = 1,2,3, which in this case is given by
Apyap1 = 0.90 £ 0.005, Apyapr = 0, Apyaps = —14.56 £ 0.005 [57]. The pseudo-Lyapunov exponents are suffi-
ciently close to the correct Lyapunov spectrum. Moreover, it is important to observe that for any dynamical
system

A4S Ay = (1) = vy (37)

where (Tr(J)) is the time average of the trace of the Jacobian along a generic trajectory.''
In the case of the three-dimensional Lorenz model, Eq. (37) implies A,; + Ay> = Aryap1 + Aryaps =
—o — b — 1. A second property of the pseudo-Lyapunov spectrum is
/1‘,11 > ]Iquax ALyap‘h (38)

..... n

10 For dynamical systems possessing a periodic/aperiodic/chaotic attractor the tangential pseudo-Lyapunov number equals zero. This
stems from the fact that the tangent sub-bundle for vector dynamics is spanned by the vector field itself which, being bounded in norm
along the attractor, expresses neither a vector contraction nor elongation.

1 Eq. (37) for the pseudo-Lyapunov exponents derives directly from the following property of the tangential and normal stretching rates
W + ZZ;}(DM = Tr(J). This property of the stretching rate spectrum can be simply derived by observing that Tr(J) = >";_, (Jws, Wy),
where {w;};_, is any orthonormal basis, and by applying it to the stretching-based orthonormal basis {&,}}_;.
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i.e. the first normal pseudo-Lyapunov exponent is always greater than the maximum Lyapunov exponent of
the system. The maximum Lyapunov exponent corresponds to the average stretching rate experienced along
the most unstable invariant sub-bundle. At each point, this stretching rate is less than or at most equal to the
local maximum normal stretching rate. This property is rather significant in terms of the stretching-based esti-
mate of the embedding dimension of a dynamical system’s global attractor (see Section 5). In particular, due to
the lack of invariance of the normal sub-bundles, it is to be expected that the positive portion of the pseudo-
Lyapunov spectrum is systematically larger than the corresponding portion of the Lyapunov spectrum. The
number N ;L of positive pseudo-exponents will also be used in Section 5 to develop criteria for model
reduction.

4.3. Chaotic reaction—diffusion models

As a typical reaction—diffusion model exhibiting a rich dynamic structure, we consider a model proposed by
Elezgaray and Arneodo [58], henceforth referred to as the EA model for short. The EA model is a system of
two coupled nonlinear partial differential equations in u(x, ¢), v(x, ¢),x € [0, 1], representing the concentrations
of two chemical species in a isothermal explosive kinetics displaying intermittent bursting for some values of
the parameters

du = DOu+ ¢ '[v — (u* + )]

39
G,U:Déivfquoc (39)

where D is the dimensionless diffusivity, and «, ¢ are positive parameters. The system Eq. (39) is equipped with
boundary conditions on the concentration values

u(0,0) =u(l,t) =up, = =2, v(0,¢) =v(l,1) = v, = —4, t>0 (40)

This system of PDEs has been analyzed numerically by Elezgaray and Arneodo [58] by means of finite-
differences, by Adrover et al. [59] by means of collocation methods, and by Graham and Kevrekidis [60] by
means of spectral methods, by considering the bifurcation properties of the system with respect to the dimen-
sionless diffusivity D € [0.02,0.04] and keeping the other parameters fixed (o = 0.01,¢ = 0.01). In the present
work, we adopt a simple finite-difference approach. As for the reaction—diffusion model Eq. (33), we adopted a
three-points finite difference approximation of the Laplacian operator. The resulting set of ODEs has been
integrated by means a fourth-order Runge—Kutta algorithm, thus obtaining a system of » = 2N ODEs in
the 2 N variables {u;}", and {0;}),, with N = 31.

For low and high values of D, the system stabilizes onto ignited and extinguished steady states, respectively.
Intermediate values of D correspond to operating conditions that allow competition between the tendency to
ignition due to the nonlinear kinetics, and the extinguishing behavior at the boundaries. This induces complex
oscillations and intermittent bursting in the center of the spatial domain.
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Fig. 7. Two-dimensional projection of the phase-space portrait v(x = 1/2,¢) vs u(x = 1/2,¢) of the asymptotic behavior of the EA
reaction—diffusion model (n = 62 ODEs) for three different values of D: (a) D = 0.0320, period-one limit cycle; (b) D = 0.03224, period-
four limit cycle; (c) D = 0.03228, chaotic attractor.
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Figs. 7(a)—(c) show the two-dimensional projection of the phase-space portrait v(x = 1/2,¢) vs u(x = 1/2,1)
of the asymptotic behavior of the Arneodo-Elezgaray reaction—diffusion model for three different values of D,
corresponding to a period-one limit cycle (D = 0.0320), a period-four limit cycle (D = 0.03224) and a chaotic
attractor (D = 0.03228).

Figs. 8-10 display the dynamics and the stretching properties of the EA model for several values of dimen-
sionless diffusivity D giving rise to the attractors depicted in Fig. 7. Specifically, panels(a) depict the time
behavior of the concentration at the mid-points, panels(b) the time evolution of the tangential stretching rate,
and panels(c) the number of active modes Nj,.. According to the local normal hyperbolicity assumption the
number of active modes N, (solid lines) is given by Ny, = N, + 1, where N, is the number of normal stretch-
ing rates w,, such that ,;, > ., h=1,...,N,. In the same panels, N, i.e. the number of tangential and nor-
mal directions characterized by positive stretching rates, is also depicted (dashed lines).
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Fig. 8. EA reaction